International Chemistry Olympiad 2021 Japan
$53^{\text {rd }}$ IChO2021 Japan
$25^{\text {th }}$ July $-2^{\text {nd }}$ August, 2021
https://www.icho2021.org

Educational Version

Published in April, 2022

The preparation of the problems for the $53^{\text {rd }}$ International Chemistry Olympiad (ChO2021) started with the first meeting of the Science Committee on April $24^{\text {th }}$ (Sunday), 2018. Since then, the Science Committee had actively worked for over three years, and the fruits of the activity were summarized as the IChO2021 Official English version, which is available on the IChO2021 website.

The problems of IChO must satisfy the following criteria:

- The problems must be of high standard and quality, for which highly talented students from all over the world should use the best of their creative ability.
- The knowledge required to solve the problems must be open to all students. Only the secondary education-level (as international baccalaureate) of knowledge is allowed to use for the problems.
- If any knowledge beyond the secondary education-level is necessary to solve the problems, it must be announced preliminarily, and at least two problems regarding this knowledge must be included in the preparatory problems.
- The number of advanced fields of knowledge must not exceed six, and each of them must be in the range that all students can master in a two- or three-hour lecture.
- The total length of the problems must not exceed 25,000 characters, so that the students have enough time to read all the problems during the examination time.
- The problems never ask any knowledge itself.
- The solutions must be logically derived from the problems and must be represented only by equations and chemical formulae.

The problems prepared under these criteria should be creative, intellectually stimulative, and educationally valuable. Since the members of the Science Committee are the professors who actively engage in research and education in various fields of chemistry, they worked hard to prepare high-quality problems with their sincere professionalism. The Science Committee "finalized" the problems (February version) along with the preparatory problems on February $1^{\text {st }}, 2021$.

International Jury is, however, the only body that can finalize the problems for the competition. In defense of the problems from comments at the International Jury, the Science Committee had to further shorten the length of the problems, and had to simplify the problems to avoid ambiguity in grading. For example, questions based on similar ideas and questions on physical chemistry in the problems of organic chemistry were deleted to shorten the total length of the problems. In addition, a question that is very sensitive to significant figures and a question that is based on the linearity of data were deleted or simplified to avoid ambiguity in grading. After these intensive trimmings, the problems became slim to be suitable for the competition. However, at the same time, some narratives and tastes that fascinated us in the February version had been lost.

In IChO2021, the Official English version was greatly admired in the International Jury. The Science Committee is proud of this praise. However, it should be noted that some essences in the February version, which is another most fruitful works achieved by the Science Committee, are missing in
the Official English version. Thus, we decided to prepare this Educational version, where the highly polished Official English version is made up with the missing contents of February version.

The Educational version reflects the entire works made by the Science Committee. We sincerely hope that the Educational version is widely utilized in chemical education as well as the Official English version.

Vice-Chair of IChO2021 Science Committee
Nobuhiro Kihara
April, 2022

I am very pleased to publish the Educational Version of the 53rd IChO Problems 2021. This Educational Version has been edited by imparting the following information to the official IChO Problems/Solutions (https://www.icho2021.org/problems/icho2021/).

1) Questions that were unfortunately deleted before the publication of the official IChO Problems because of the IChO exam length regulation. (after yellow highlight)
2) Questions that were unfortunately deleted before the publication of the official IChO Problems because of potential difficulty in marking by following the IChO marking regulation. (after yellow highlight)
3) Tutorial comments and useful literature for further study (Written in pale green)

I sincerely hope that you can touch the passion of the Science Committee members through this Educational Version and that this Version is valuable for young people who participated in IChO, high school students who are eager to participate in IChO, and their mentors.

I would like to express my deepest gratitude to all the Theoretical Problem Subcommittee members for their great efforts in creating both preparatory and IChO2021 problems. I would also like to thank the reviewers for their valuable comments and suggestions.

All the best for all those who have been involved in IChO,

Hideki Yorimitsu

On behalf of 53rd IChO 2021 Theoretical Problem Subcommittee, Science Committee

The 53 ${ }^{\text {rd }}$ International Chemistry Olympiad 2021, Japan
Science Committee Chair NISHIHARA, Hiroshi (Professor, Tokyo University of Science)
Science Committee Vice-Chair KIHARA, Nobuhiro (Professor, Kanagawa University)

Theoretical Problem Subcommittee Chair YORIMITSU, Hideki (Professor, Kyoto University)
Science Committee Secretary HIROI, Takashi (Researcher, National Institute for Materials Science)

Science Committee Assistant

SAITO, Hayate (Assistant Professor, Kyoto University)

Physical Chemistry Branch (Question 1-4)
MATSUMOTO, Yoshiyasu (Fellow, Toyota Physical and Chemical Research Institute) * Chair HASEGAWA, Takeshi (Professor, Kyoto University)
SATO, Hirofumi (Professor, Kyoto University)
OKUYAMA, Hiroshi (Associate Professor, Kyoto University)
HIROI, Takashi (Researcher, National Institute for Materials Science)

Inorganic/Analytical Chemistry Branch (Question 5 and 6)
NISHI, Naoya (Associate Professor, Kyoto University) * Chair
UCHIDA, Sayaka (Associate Professor, University of Tokyo)
SASAMORI, Takahiro (Professor, University of Tsukuba)
HORIKE, Satoshi (Associate Professor, Kyoto University)
HOSOKAWA, Saburo (Associate Professor, Kyoto Institute of Technology)
HIROI, Takashi (Researcher, National Institute for Materials Science)

Organic Chemistry Branch (Question 7-9)
SHIMOKAWA, Jun (Associate Professor, Kyoto University) * Chair
TSUBAKI, Kazunori (Professor, Kyoto Prefecture University)
YAMAGUCHI, Hiroyasu (Professor, Osaka University)
SHINTANI, Ryo (Professor, Osaka University)
TANAKA, Takayuki (Associate Professor, Kyoto University)
SAITO, Hayate (Assistant Professor, Kyoto University)

Physical Constants and Equations

Constants

Speed of light in vacuum, $c=2.99792458 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Planck constant, $h=6.62607015 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Elementary charge, $e=1.602176634 \times 10^{-19} \mathrm{C}$
Electron mass, $m_{\mathrm{e}}=9.10938370 \times 10^{-31} \mathrm{~kg}$
Electric constant (permittivity of vacuum), $\varepsilon_{0}=8.85418781 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1}$
Avogadro constant, $N_{\mathrm{A}}=6.02214076 \times 10^{23} \mathrm{~mol}^{-1}$
Boltzmann constant, $k_{\mathrm{B}}=1.380649 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Faraday constant, $F=N_{\mathrm{A}} \times e=9.64853321233100184 \times 10^{4} \mathrm{C} \mathrm{mol}^{-1}$
Gas constant, $R=N_{\mathrm{A}} \times k_{\mathrm{B}}=8.31446261815324 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
=8.2057366081 \times 10^{-2} \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Unified atomic mass unit, $u=1 \mathrm{Da}=1.66053907 \times 10^{-27} \mathrm{~kg}$
Standard pressure, $p=1 \mathrm{bar}=10^{5} \mathrm{~Pa}$
Atmospheric pressure, $p_{\text {atm }}=1.01325 \times 10^{5} \mathrm{~Pa}$
Zero degree Celsius, $0^{\circ} \mathrm{C}=273.15 \mathrm{~K}$
Ångström, $1 \AA=10^{-10} \mathrm{~m}$
Picometer, $1 \mathrm{pm}=10^{-12} \mathrm{~m}$
Electronvolt, $1 \mathrm{eV}=1.602176634 \times 10^{-19} \mathrm{~J}$
Part-per-million, $1 \mathrm{ppm}=10^{-6}$
Part-per-billion, $1 \mathrm{ppb}=10^{-9}$
Part-per-trillion, $1 \mathrm{ppt}=10^{-12}$
pi, $\pi=3.141592653589793$
The base of the natural logarithm (Euler's number), $e=2.718281828459045$

Equations

The ideal gas law:

The first law of thermodynamics:

Enthalpy H :
Entropy based on Boltzmann's principle S :

The change of entropy ΔS :

Gibbs free energy G :

Reaction quotient Q :

Heat change Δq :

Nernst equation for redox reaction:
$P V=n R T$
, where P is the pressure, V is the volume, n is the amount of substance, T is the absolute temperature of ideal gas.
$\Delta U=q+w$
, where ΔU is the change in the internal energy, q is the heat supplied, w is the work done.
$H=U+P V$
$S=k_{B} \ln W$
, where W is the number of microstates.
$\Delta S=\frac{q_{r e v}}{T}$
, where q_{rev} is the heat for the reversible process.
$G=H-T S$
$\Delta_{r} G^{0}=-R T \ln K=-z F E^{0}$
, where K is the equilibrium constant, z is the number of electrons, E^{0} is the standard electrode potential.
$\Delta_{r} G=\Delta_{r} G^{0}+R T \ln Q$
For a reaction
$a \mathrm{~A}+b \mathrm{~B} \rightleftharpoons c \mathrm{C}+d \mathrm{D}$
$Q=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$
, where $[A]$ is the concentration of A.
$\Delta q=n c_{\mathrm{m}} \Delta T$
, where c_{m} is the temperature-independent molar heat capacity.
$E=E^{0}+\frac{R T}{z F} \ln \left(\frac{C_{\mathrm{ox}}}{C_{\text {red }}}\right)$
, where C_{ox} is the concentration of oxidized substance, $C_{\text {red }}$ is the concentration of reduced substance.

Arrhenius equation:
$k=A \exp \left(-\frac{E_{a}}{R T}\right)$

	, where k is the rate constant, A is the preexponential factor, E_{a} is the activation energy. $\exp (x)=e^{x}$
Lambert-Beer equation:	$A=\varepsilon l c$, where A is the absorbance, ε is the molar absorption coefficient, I is the optical path length, c is the concentration of the solution.
Henderson-Hasselbalch equation:	For an equilibrium $\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$, where equilibrium constant is K_{a}, $\mathrm{pH}=\mathrm{p} K_{a}+\log \left(\frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}\right)$
Energy of a photon:	$E=h v=h \frac{c}{\lambda}$, where ν is the frequency, λ is the wavelength of the light.
The sum of a geometric series:	When $x \neq 1$, $1+x+x^{2}+\ldots+x^{n}=\sum_{i=0}^{n} x^{i}=\frac{1-x^{n+1}}{1-x}$
Approximation equation that can be used to solve problems:	$\begin{aligned} & \text { When } x \ll 1 \\ & \frac{1}{1-x} \sim 1+x \end{aligned}$

	(1)
	(\%)
	\% 들

$\Delta \delta$ for one alkyl group-substitution: $c a .+0.4 \mathrm{ppm}$

Question 1: Hydrogen at a Metal Surface

Hydrogen is expected to be a future energy source that does not depend on fossil fuels. Here, we will consider the hydrogen-storage process in metal, which is related to hydrogen-transport and -storage technology.

Part A

As hydrogen is absorbed into the bulk of a metal via its surface, let us first consider the adsorption process of hydrogen at the metal surface, $\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{ad})$, where the gaseous and adsorbed states of hydrogen are represented as (g) and (ad), respectively. Hydrogen molecules $\left(\mathrm{H}_{2}\right)$ that reach the metal (M) dissociate at the surface and are adsorbed as H atoms (Fig. 1). Here, the potential energy of H_{2} is represented by two variables: the interatomic distance d and the height relative to the surface metal atom, z. It is assumed that the axis along the two H atoms is parallel to the surface and that the center of gravity is always on the vertical dotted line in Fig. 1. Fig. 2 shows the potential energy contour plot for the dissociation at the surface. The numerical values represent the potential energy in units of kJ per mole of H_{2}. The solid line spacing is $20 \mathrm{~kJ} \mathrm{~mol}^{-1}$, the dashed line spacing is $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$, and the spacing between solid and dashed lines is 80 kJ mol^{-1}. The zero-point vibration energy is ignored
A. 1 For each of the following items (i)-(iii), select the closest values from A-G.
(i) The interatomic distance for a gaseous H_{2} molecule.
(ii) The interatomic distance between metal atoms (d_{M} in Fig. 1).
(iii) The distance of adsorbed H atoms from the surface (h_{ad} in Fig. 1).
A. 0.03 nm , B. 0.07 nm, C. 0.11 nm , D. 0.15 nm , E. 0.19 nm , F. 0.23 nm, G. 0.27 nm
(i) B, (ii) F , (iii) A
A. 2 For each of the following items (i)-(ii), select the closest value from A-H.
(i) The energy required for the dissociation of gaseous H_{2} molecule to gaseous $\mathrm{H}\left[\mathrm{H}_{2}(\mathrm{~g}) \rightarrow\right.$ $2 \mathrm{H}(\mathrm{g})]$.
(ii) The energy released during the adsorption of a gaseous $\mathrm{H}_{2}\left[\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{ad})\right]$
A. $20 \mathrm{~kJ} \mathrm{~mol}^{-1}$, B. $40 \mathrm{~kJ} \mathrm{~mol}^{-1}$, C. $60 \mathrm{~kJ} \mathrm{~mol}^{-1}$, D. $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$, E. $150 \mathrm{~kJ} \mathrm{~mol}^{-1}$, F. $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$, G. $300 \mathrm{~kJ} \mathrm{~mol}^{-1}$, H. $400 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(i) H, (ii) D

Fig. 1 Definition of variables. Drawing is not in scale.

Fig. 2 Potential energy for the adsorption process of hydrogen at the metal surface as a function of d and z.

In Part A, dissociative adsorption process of hydrogen molecules on a metal surface is considered using two-dimensional potential by taking the intramolecular distance as a variable in addition to the distance between the molecule and the surface. In general, there are as many variables as the number of degrees of freedom (six) of the reactant (in this case, hydrogen molecule), and the sixdimensional potential can be considered by considering all of them.

Part B

The adsorbed hydrogen atoms are then either absorbed into the bulk, or recombine and desorb back into the gas phase, as shown in the reactions (1a) and (1b). $\mathrm{H}(\mathrm{ab})$ represents a hydrogen atom absorbed in the bulk.

$$
\begin{align*}
& \mathrm{H}_{2}(\mathrm{~g}) \stackrel{k_{1}}{\underset{k_{2}}{\rightleftharpoons}} 2 \mathrm{H}(\mathrm{ad}) \tag{1a}\\
& \mathrm{H}(\mathrm{ad}) \xrightarrow{k_{3}} \mathrm{H}(\mathrm{ab}) \tag{1b}
\end{align*}
$$

The reaction rates per site for adsorption, desorption, and absorption are $r_{1}\left[\mathrm{~s}^{-1}\right], r_{2}\left[\mathrm{~s}^{-1}\right]$, and r_{3} [s^{-1}], respectively. They are expressed as:

$$
\begin{gather*}
r_{1}=k_{1} P_{\mathrm{H}_{2}}(1-\theta)^{2} \tag{2}\\
r_{2}=k_{2} \theta^{2} \tag{3}\\
r_{3}=k_{3} \theta \tag{4}
\end{gather*}
$$

where $k_{1}\left[\mathrm{~s}^{-1} \mathrm{~Pa}^{-1}\right], k_{2}\left[\mathrm{~s}^{-1}\right]$, and $k_{3}\left[\mathrm{~s}^{-1}\right]$ are the reaction rate constants and $P_{\mathrm{H}_{2}}$ [Pa] is the pressure of H_{2}. Among the sites available on the surface, $\theta(0 \leq \theta \leq 1)$ is the fraction occupied by H atoms. It is assumed that adsorption and desorption are fast compared to absorption ($r_{1}, r_{2} \gg$ r_{3}) and that θ remains constant.

B. $1 r_{3}$ can be expressed as:

$$
\begin{equation*}
r_{3}=\frac{k_{3}}{1+\sqrt{\frac{1}{P_{\mathrm{H}_{2}} C}}} \tag{5}
\end{equation*}
$$

Express C using k_{1} and k_{2}.

From $r_{1}, r_{2} \gg r_{3}$ and $r_{1}=r_{2}+r_{3}$,

$$
r_{1}=r_{2}
$$

Then,

$$
k_{1} P_{\mathrm{H}_{2}}(1-\theta)^{2}=k_{2} \theta^{2}
$$

Solve for θ :

$$
\theta=\frac{1}{1+\sqrt{\frac{k_{2}}{P_{\mathrm{H}_{2}} k_{1}}}}
$$

From $r_{3}=k_{3} \theta$:

$$
r_{3}=\frac{k_{3}}{1+\sqrt{\frac{k_{2}}{P_{\mathrm{H}_{2}} k_{1}}}}
$$

Thus,

$$
C=\frac{k_{1}}{k_{2}}
$$

This is a question regarding the equilibrium steady state between the second-order adsorption process (2) and the second-order desorption process (3). The expression of θ is different from that of the well-known first-order Langmuir equation.

A metal sample with a surface area of $S=1.0 \times 10^{-3} \mathrm{~m}^{2}$ was placed in a container ($1 \mathrm{~L}=1.0 \times 10^{-3}$ $\left.\mathrm{m}^{3}\right)$ with $\mathrm{H}_{2}\left(P_{\mathrm{H}_{2}}=1.0 \times 10^{2} \mathrm{~Pa}\right)$. The density of hydrogen-atom adsorption sites on the surface was $N=1.3 \times 10^{18} \mathrm{~m}^{-2}$. The surface temperature was kept at $T=400 \mathrm{~K}$. As the reaction (1) proceeded, $P_{\mathrm{H}_{2}}$ decreased at a constant rate of $v=4.0 \times 10^{-4} \mathrm{~Pa} \mathrm{~s}{ }^{-1}$. Assume that H_{2} is an ideal gas, and that the volume of the metal sample is negligible.
B. 2 Calculate the amount of H atoms in moles absorbed per unit area of the surface per unit time, $A\left[\mathrm{~mol} \mathrm{~s}^{-1} \mathrm{~m}^{-2}\right]$.

The change in the amount of hydrogen atoms per unit time in the gas phase is $A \times S$. Thus, $A \times S=\frac{2 v V}{R T}$
$=2 \times 4.0 \times 10^{-4} \times \frac{10^{-3}}{8.31 \times 400}=2.4 \times 10^{-10} \mathrm{~mol} \mathrm{~s}^{-1}$
Therefore,

$$
\underline{A}=2.4 \times 10^{-7} \mathrm{~mol} \mathrm{~s}^{-1} \mathrm{~m}^{-2}
$$

The reduction rate of hydrogen molecules in the container is obtained from the pressure change, which is associated with the rate of absorption into the metal. Note that 1 mol of hydrogen molecule corresponds to 2 mol of hydrogen atom.

B. 3 At $T=400 \mathrm{~K}, C$ equals $1.0 \times 10^{2} \mathrm{~Pa}^{-1}$. Calculate the value of k_{3} at 400 K .

The relationship between r_{3} and A is:

$$
A=r_{3} \times \frac{N}{N_{A}}
$$

Thus,

$$
r_{3}=A \times \frac{N_{A}}{N}=1.1 \times 10^{-1} \mathrm{~s}^{-1}
$$

Solution 1:

$$
r_{3}=\frac{k_{3}}{1+\sqrt{\frac{1}{P_{\mathrm{H}_{2}} C}}}=\frac{k_{3}}{1+\sqrt{\frac{1}{10000}}}=\frac{k_{3}}{1.01}
$$

Thus,

$$
k_{3}=1.01 \times r_{3}=1.1 \times 10^{-1} \mathrm{~s}^{-1}
$$

Solution 2:
Under the conditions ($P_{\mathrm{H}_{2}} C \gg 1$), it follows that:

$$
\begin{aligned}
& r_{3}=\frac{k_{3}}{1+\sqrt{\frac{1}{P_{\mathrm{H}_{2}} C}}} \cong \frac{k_{3}}{1}=k_{3} \\
& \underline{k_{3}}=r_{3}=1.1 \times 10^{-1} \mathrm{~s}^{-1}
\end{aligned}
$$

Because r_{3} and A are directly related, one can find the value of $r_{3} . k_{3}$ and r_{3} are related in the equation of B.1. In the present case, one can find k_{3} from $r_{3} \cong k_{3}\left(P_{\mathrm{H}_{2}} C \gg 1\right)$. In this situation, the adsorption sites on the surface are almost saturated ($\theta \cong 1$). In general, the reaction rate (r_{3}, etc.) depends on the pressure and θ, but the reaction rate constant (k_{3}, etc.) depends only on the temperature.
B. 4 At different $T, C=2.5 \times 10^{3} \mathrm{~Pa}^{-1}$ and $k_{3}=4.8 \times 10^{-2} \mathrm{~s}^{-1}$ are given. For r_{3} as a function of $P_{\mathrm{H}_{2}}$ at this temperature, select the correct plot from (a)-(h).

The figures show the region in which $P_{\mathrm{H}_{2}} C \ll 1$. Therefore,
$r_{3}=\frac{k_{3}}{1+\sqrt{\frac{1}{P_{\mathrm{H}_{2}} C}}}$
$\cong \frac{k_{3}}{\sqrt{\frac{1}{\mathrm{P}_{2} \mathrm{C}}}}=k_{3} \sqrt{P_{\mathrm{H}_{2} \mathrm{C}} \mathrm{C}}=2.4 \sqrt{P_{\mathrm{H}_{2}}}$
Thus, (b)

Because the temperature is different, k_{3} and C are also different from the previous question. The horizontal axis of the graph represents the region of $P_{\mathrm{H}_{2}} C \ll 1$. This corresponds to the region where θ is small, and it can be seen from the equation of $\mathbf{B} .1$ that r_{3} depends on the square root of $P_{\mathrm{H}_{2}}$. In this situation, the adsorption sites on the surface are almost vacant $(\theta \ll 1)$, but the predetermined conditions $r_{1}, r_{2} \gg r_{3}$ are maintained. However, when the pressure decreases to about $P_{\mathrm{H}_{2}}=1 \times 10^{-8} \mathrm{~Pa}$ (the line is excluded in the graph), this condition does not hold and the equation of $\mathbf{B} .1$ is no longer valid.

Question 2: Isotope Time Capsule

Molecular entities that differ only in isotopic composition, such as CH_{4} and $\mathrm{CH}_{3} \mathrm{D}$, are called isotopologues. Isotopologues are considered to have the same chemical characteristics. In nature, however, there exists a slight difference.
Let us consider the following equilibrium:

$$
{ }^{12} \mathrm{C}^{16} \mathrm{O}_{2}+{ }^{12} \mathrm{C}^{18} \mathrm{O}_{2} \nLeftarrow 2^{12} \mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O} \quad K=\frac{\left[\mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O}\right]^{2}}{\left[\mathrm{C}^{16} \mathrm{O}_{2}\right]\left[\mathrm{C}^{18} \mathrm{O}_{2}\right]}
$$

The entropy, S, increases with increasing the number of possible combinations, W :

$$
\begin{equation*}
S=k_{B} \ln W \tag{2}
\end{equation*}
$$

$W=1$ for ${ }^{12} \mathrm{C}^{16} \mathrm{O}_{2}$ and ${ }^{12} \mathrm{C}^{18} \mathrm{O}_{2}$. In contrast, $W=2$ for a ${ }^{12} \mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O}$ molecule because the oxygen atoms are distinguishable. As the right-hand side of the equilibrium shown in eq. 1 has two ${ }^{12} \mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O}$ molecules, $W=2^{2}=4$.

The following question A. 1 is not included in the official IChO Problems 2021 because of the IChO exam length regulation.
A. 1 The equilibrium of the oxygen isotope is accomplished between CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ over a long period. A separation factor, α, of the oxygen atom for this equilibrium is defined as follows.

$$
\begin{equation*}
\alpha=\frac{{ }^{18} \mathrm{O} /{ }^{16} \mathrm{O} \text { in } \mathrm{CO}_{2}}{{ }^{18} \mathrm{O} /{ }^{16} \mathrm{O} \text { in } \mathrm{H}_{2} \mathrm{O}}=\frac{\left(2\left[\mathrm{C}^{18} \mathrm{O}_{2}\right]+\left[\mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O}\right]\right) /\left(2\left[\mathrm{C}^{16} \mathrm{O}_{2}\right]+\left[\mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O}\right]\right)}{\left[\mathrm{H}_{2}^{18} \mathrm{O}\right] /\left[\mathrm{H}_{2}^{16} \mathrm{O}\right]} \tag{3}
\end{equation*}
$$

When $T \rightarrow+\infty, \alpha$ is expressed without using $\left[\mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O}\right]$ as follows.

$$
\begin{equation*}
\alpha=\frac{\left[\mathrm{C}^{18} \mathrm{O}_{2}\right]^{a} /\left[\mathrm{C}^{16} \mathrm{O}_{2}\right]^{b}}{\left[\mathrm{H}_{2}^{18} \mathrm{O}\right]^{c} /\left[\mathrm{H}_{2}^{16} \mathrm{O}\right]^{d}} \tag{4}
\end{equation*}
$$

Using eq. 1 , calculate the values of $a-d$.

$$
\frac{\left[\mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O}\right]^{2}}{\left[\mathrm{C}^{16} \mathrm{O}_{2}\right]\left[\mathrm{C}^{18} \mathrm{O}_{2}\right]}=4 \rightarrow\left[\mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O}\right]=2\left[\mathrm{C}^{16} \mathrm{O}_{2}\right]^{1 / 2}\left[\mathrm{C}^{18} \mathrm{O}_{2}\right]^{1 / 2}
$$

Therefore,

$$
\begin{aligned}
\frac{2\left[\mathrm{C}^{18} \mathrm{O}_{2}\right]+\left[\mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O}\right]}{2\left[\mathrm{C}^{16} \mathrm{O}_{2}\right]+\left[\mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O}\right]} & =\frac{2\left[\mathrm{C}^{18} \mathrm{O}_{2}\right]+2\left[\mathrm{C}^{16} \mathrm{O}_{2}\right]^{\frac{1}{2}}\left[\mathrm{C}^{18} \mathrm{O}_{2}\right]^{\frac{1}{2}}}{2\left[\mathrm{C}^{16} \mathrm{O}_{2}\right]+2\left[\mathrm{C}^{16} \mathrm{O}_{2}\right]^{\frac{1}{2}}\left[\mathrm{C}^{18} \mathrm{O}_{2}\right]^{\frac{1}{2}}} \\
& =\frac{\left[\mathrm{C}^{18} \mathrm{O}_{2}\right]^{\frac{1}{2}}\left(\left[\mathrm{C}^{16} \mathrm{O}_{2}\right]^{\frac{1}{2}}+\left[\mathrm{C}^{18} \mathrm{O}_{2}\right]^{\frac{1}{2}}\right)}{\left[\mathrm{C}^{16} \mathrm{O}_{2}\right]^{\frac{1}{2}}\left(\left[\mathrm{C}^{16} \mathrm{O}_{2}\right]^{\frac{1}{2}}+\left[\mathrm{C}^{18} \mathrm{O}_{2}\right]^{\frac{1}{2}}\right)}=\frac{\left[\mathrm{C}^{18} \mathrm{O}_{2}\right]^{\frac{1}{2}}}{\left[\mathrm{C}^{16} \mathrm{O}_{2}\right]^{\frac{1}{2}}}
\end{aligned}
$$

Substitute this relationship into eq. 3:

$$
\alpha=\frac{\left(2\left[\mathrm{C}^{18} \mathrm{O}_{2}\right]+\left[\mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O}\right]\right) /\left(2\left[\mathrm{C}^{16} \mathrm{O}_{2}\right]+\left[\mathrm{C}^{16} \mathrm{O}^{18} \mathrm{O}\right]\right)}{\left[\mathrm{H}_{2}^{18} \mathrm{O}\right] /\left[\mathrm{H}_{2}{ }^{16} \mathrm{O}\right]}=\frac{\left[\mathrm{C}^{18} \mathrm{O}_{2}\right]^{\frac{1}{2}} /\left[\mathrm{C}^{16} \mathrm{O}_{2}\right]^{\frac{1}{2}}}{\left[\mathrm{H}_{2}^{18} \mathrm{O}\right] /\left[\mathrm{H}_{2}{ }^{16} \mathrm{O}\right]}
$$

Therefore, $a=b=1 / 2, c=d=1$.
A. 2 The enthalpy change, ΔH, of eq. 5 is positive regardless of the temperature.

$$
\begin{equation*}
\mathrm{H}_{2}+\mathrm{DI} \rightleftarrows \mathrm{HD}+\mathrm{HI} \tag{5}
\end{equation*}
$$

Calculate the equilibrium constant, K, for eq. 5 at very low (think of $T \rightarrow 0$) and very high (think of $T \rightarrow+\infty)$ temperatures. Assume that the reaction remains unchanged at these temperatures and that ΔH converges to a constant value for low / high temperatures.

$$
\begin{aligned}
& \Delta G=\Delta H-T \Delta S=-R T \ln K \rightarrow \ln K=-\Delta H / R T+\Delta S / R \\
& (K=\exp (-\Delta H / R T) \exp (\Delta S / R)) \\
& T \rightarrow 0: \text { As } \Delta H>0, \ln K \text { converges to }-\infty \text { and therefore } \underline{K=0} \\
& T \rightarrow+\infty: \ln K=\Delta S / R
\end{aligned}
$$

Given that ΔS per 1 mole is $N_{A} k_{B} \ln W=R \ln 2, \underline{K}=2$

The followings are the other examples of K for $T \rightarrow+\infty$.

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{O}+\mathrm{HDS} \rightleftarrows \mathrm{HDO}+\mathrm{H}_{2} \mathrm{~S} & \mathrm{~K} \rightarrow 1 \\
\mathrm{NH}_{3}+\mathrm{HD} \rightleftarrows \mathrm{NH}_{2} \mathrm{D}+\mathrm{H}_{2} & \mathrm{~K} \rightarrow 3 / 2 \\
{ }^{14} \mathrm{~N}^{15} \mathrm{NO}+{ }^{14} \mathrm{NO} \rightleftarrows{ }^{14} \mathrm{~N}_{2} \mathrm{O}+{ }^{15} \mathrm{NO} & \mathrm{~N} \rightarrow 1
\end{array}
$$

The molecules whose W is not 1 are; $\mathrm{HDS}: W=2, \mathrm{HDO}: W=2, \mathrm{HD}: W=2, \mathrm{NH}_{2} \mathrm{D}: W=3$.
Note that two nitrogen atoms in ${ }^{14} \mathrm{~N}^{15} \mathrm{NO}$ are not equivalent, and therefore $K=1$ for $T \rightarrow+\infty$.

The following question A. 3 is not included in the official IChO Problems 2021 because of potential difficulty in marking by following the IChO marking regulation.
By using the temperature dependence of the equilibrium constant between isotopologues in substances, we can estimate the temperature at which the substances existed. The temperature dependence of the equilibrium constant can be determined experimentally. As an example, let us estimate the temperature at which the CaCO_{3} was produced in water using the isotope ratio of oxygen, ${ }^{18} \mathrm{O} /{ }^{16} \mathrm{O}$. A separation factor of the oxygen atom for the equilibrium between CaCO_{3} and $\mathrm{H}_{2} \mathrm{O}$ is defined as follows. [Geochim. Cosmochim. Acta 61, 3461 (1997)]

$$
\begin{equation*}
\alpha=\frac{{ }^{18} \mathrm{O} /{ }^{16} \mathrm{O} \text { in } \mathrm{CaCO}_{3}}{{ }^{18} \mathrm{O} /{ }^{16} \mathrm{O} \text { in } \mathrm{H}_{2} \mathrm{O}} \tag{6}
\end{equation*}
$$

The temperature dependence of α in $10-40^{\circ} \mathrm{C}$ is determined as follows where T is given as absolute temperature (unit: K).

$$
\begin{equation*}
\ln \alpha=\frac{18.03}{T}-3.242 \times 10^{-2} \tag{7}
\end{equation*}
$$

A. $3 \quad{ }^{18} \mathrm{O} /{ }^{16} \mathrm{O}$ of CaCO_{3} produced at a certain temperature was 2.051741×10^{-3}. By assuming that ${ }^{18} \mathrm{O} /{ }^{16} \mathrm{O}$ of $\mathrm{H}_{2} \mathrm{O}$ is 1.988557×10^{-3} regardless of the temperature, estimate the temperature at which the CaCO_{3} was produced.

```
\alpha=2.051741\times1\mp@subsup{0}{}{-3}/1.988557\times1\mp@subsup{0}{}{-3}=1.031774
T=18.03 / (ln \alpha+3.242\times10-2 )= 283.0 K
```

For the estimation of the temperature using ${ }^{18} \mathrm{O} /{ }^{16} \mathrm{O}$, we have to assume ${ }^{18} \mathrm{O} /{ }^{16} \mathrm{O}$ of $\mathrm{H}_{2} \mathrm{O}$. However, ${ }^{18} \mathrm{O} /{ }^{16} \mathrm{O}$ of $\mathrm{H}_{2} \mathrm{O}$ varies with time and place. To solve this problem, the molecule which contains two rare isotopes, called doubly-substituted isotopologue, can be used.
The ΔH of eq. 8 originates from molecular vibration.

$$
\begin{equation*}
2 \mathrm{HD} \nLeftarrow \mathrm{H}_{2}+\mathrm{D}_{2} \tag{8}
\end{equation*}
$$

At $T=0 \mathrm{~K}$, the vibrational energy of a diatomic molecule whose vibration frequency is $v \mathrm{~s}^{-1}$ is expressed as:

$$
\begin{align*}
& E=\frac{1}{2} h v \tag{9}\\
& v=\frac{1}{2 \pi} \sqrt{\frac{k}{\mu}} \tag{10}
\end{align*}
$$

Wherein k is the force constant and μ the reduced mass, which is expressed in terms of the mass of the two atoms in the diatomic molecule, m_{1} and m_{2}, according to:

$$
\begin{equation*}
\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \tag{11}
\end{equation*}
$$

A. 4 The vibrational frequency of H_{2} is $4161.0 \mathrm{~cm}^{-1}$ in units of wavenumbers. Calculate the ΔH of the following equation at $T=0 \mathrm{~K}$ in units of $\mathrm{J} \mathrm{mol}^{-1}$.

$$
\begin{equation*}
2 \mathrm{HD} \rightarrow \mathrm{H}_{2}+\mathrm{D}_{2} \tag{12}
\end{equation*}
$$

Assume that:
> only the vibrational energy contributes to the ΔH.
$>$ the k values for $\mathrm{H}_{2}, \mathrm{HD}$, and D_{2} are identical.
$>$ the masses of H and D are 1.0078 Da and 2.0141 Da , respectively.
$\mu_{\mathrm{H}_{2}}=0.5039 \mathrm{Da}, \mu_{\mathrm{HD}}=0.6717 \mathrm{Da}, \mu_{\mathrm{H}_{2}}=1.0071 \mathrm{Da}$
Using $v=\frac{1}{2 \pi} \sqrt{\frac{k}{\mu}}, \frac{v_{\mathrm{HD}}}{v_{\mathrm{H}_{2}}}=\sqrt{\frac{\mu_{\mathrm{H}_{2}}}{\mu_{\mathrm{HD}}}}$ and $\frac{v_{\mathrm{D}_{2}}}{v_{\mathrm{H}_{2}}}=\sqrt{\frac{\mu_{\mathrm{H}_{2}}}{\mu_{\mathrm{D}_{2}}}}$ are obtained.
The frequency of the H_{2} vibration is $4161.0 \mathrm{~cm}^{-1}$ in units of wavenumbers.
Therefore, the frequencies of the molecular vibration for HD and D_{2} are calculated to be $3604.0 \mathrm{~cm}^{-1}$ and $2943.4 \mathrm{~cm}^{-1}$, respectively.
The difference of the zero-point energies of eq. 12 is calculated to be
$\tilde{v}=(4161.0+2943.4) / 2-3604.0=-51.8 \mathrm{~cm}^{-1}$.
$E=N_{\mathrm{A}} h v=N_{\mathrm{A}} h c \tilde{v}$ ($\tilde{v}:$ frequency in wavenumbers), and therefore $E=\Delta H=-620 \mathrm{~J} \mathrm{~mol}^{-1}$.

As the temperature increases, the equilibrium constant K of eq. 8 converges to $1 / 4$ because the contribution of entropy to K overwhelms the contribution of enthalpy. Therefore, the abundance ratio among $\mathrm{H}_{2}, \mathrm{HD}$, and D_{2} depends on the temperature. Although the amount of this change is quite small, the ratio of change is observable for D_{2}, the amount of which is inherently very small. Let us use this dependence on the temperature in a system in equilibrium. $\Delta_{\mathrm{D} 2}$ is defined as the ratio of change of the molar ratio of D_{2}.

$$
\begin{equation*}
\Delta_{\mathrm{D}}=\frac{R_{\mathrm{D} 2}}{R_{\mathrm{D} 2}}-1 \tag{13}
\end{equation*}
$$

Here, $R_{\mathrm{D} 2}$ refers to $\left[\mathrm{D}_{2}\right] /\left[\mathrm{H}_{2}\right]$ in the sample and $R_{\mathrm{D} 2}{ }^{*}$ to $\left[\mathrm{D}_{2}\right] /\left[\mathrm{H}_{2}\right]$ at $T \rightarrow+\infty$. It should be noted here that the distribution of isotopes becomes random at $T \rightarrow+\infty$.
A. 5 Calculate $\Delta_{\mathrm{D} 2}$ with natural D abundance when the isotopic exchange is in equilibrium at the temperature where K in eq. 8 is 0.300 . Assume that the natural abundance ratios of D and H are 1.5576×10^{-4} and $1-1.5576 \times 10^{-4}$, respectively.

Solution 1:

Let the sum of the concentrations of $\mathrm{H}_{2}, \mathrm{HD}$, and D_{2} be C .

- $T \rightarrow+\infty(K=1 / 4)$
$\left[\mathrm{H}_{2}\right]_{0}=\left(1-1.5576 \times 10^{-4}\right)^{2} \mathrm{C}=9.9969 \times 10^{-1} \mathrm{C}$
$\left[\mathrm{D}_{2}\right]_{0}=\left(1.5576 \times 10^{-4}\right)^{2} \mathrm{C}=2.4261 \times 10^{-8} \mathrm{C}$
- $K=0.300$

Let the amount of change in the molar ratio be x.
$\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{D}_{2}\right]}{[\mathrm{HD}]^{2}}=\frac{\left(\left[\mathrm{H}_{2}\right]_{0} / C+x\right)\left(\left[\mathrm{D}_{2}\right]_{0} / C+x\right)}{\left([\mathrm{HD}]_{0} / C-2 x\right)^{2}}=K$
Solve the equation for x when $K=0.300$:
$(1-4 K) x^{2}+\left(\frac{\left[\mathrm{H}_{2}\right]_{0}}{C}+\frac{\left[\mathrm{D}_{2}\right]_{0}}{C}+4 K \frac{[\mathrm{HD}]_{0}}{C}\right) x+\left(\frac{\left[\mathrm{H}_{2}\right]_{0}\left[\mathrm{D}_{2}\right]_{0}}{C^{2}}-K \frac{[\mathrm{HD}]_{0}^{2}}{C^{2}}\right)=0$,
$x=4.8504 \times 10^{-9}$.
From this value, we obtain $\left[\mathrm{H}_{2}\right]=9.9969 \times 10^{-1} \mathrm{C}$ and $\left[\mathrm{D}_{2}\right]=2.9112 \times 10^{-8} \mathrm{C}$.

$$
\Delta_{\mathrm{D} 2}=\frac{R_{\mathrm{D} 2}}{R_{\mathrm{D} 2}^{*}}-1=\frac{2.9112 \times 10^{-8} / 9.9969 \times 10^{-1}}{2.4261 \times 10^{-8} / 9.9969 \times 10^{-1}}-1=0.200
$$

Solution 2:

By using an appropriate approximation, we can obtain the answer without calculating the concentration of each species. The use of this approximation is rationalized considering that the values of $\left[\mathrm{H}_{2}\right],[\mathrm{HD}]$, and $\left[\mathrm{D}_{2}\right]$ differ by 4 orders of magnitudes while the required significant digits for K are 3.

$$
\begin{gathered}
\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{D}_{2}\right]}{[\mathrm{HD}]^{2}}=\frac{\left(\left[\mathrm{H}_{2}\right]_{0}+y\right)\left(\left[\mathrm{D}_{2}\right]_{0}+y\right)}{\left([\mathrm{HD}]_{0}-y\right)^{2}} \simeq \frac{\left[\mathrm{H}_{2}\right]_{0}\left[\mathrm{D}_{2}\right]}{[\mathrm{HD}]_{0}^{2}} \\
\Delta_{\mathrm{D} 2}=\frac{R_{\mathrm{D} 2}}{R_{\mathrm{D} 2}^{*}}-1=\frac{\left[\mathrm{D}_{2}\right] /\left[\mathrm{H}_{2}\right]}{\left[\mathrm{D}_{2}\right]_{0} /\left[\mathrm{H}_{2}\right]_{0}}-1 \simeq \frac{\left[\mathrm{D}_{2}\right]}{\left[\mathrm{D}_{2}\right]_{0}}-1=\frac{\left[\mathrm{H}_{2}\right]_{0}\left[\mathrm{D}_{2}\right] /[\mathrm{HD}]_{0}^{2}}{\left[\mathrm{H}_{2}\right]_{0}\left[\mathrm{D}_{2}\right]_{0} /[\mathrm{HD}]_{0}^{2}}-1 \simeq \frac{0.300}{0.250}-1 \simeq 0.200
\end{gathered}
$$

The problem raised in A .3 is that ${ }^{18} \mathrm{O} /{ }^{16} \mathrm{O}$ of $\mathrm{H}_{2} \mathrm{O}$ varies with time and place despite the absolute value of the abundance ratio is required for the estimation of temperature. In contrast, Solution 2 above shows that the abundance ratio of D does not affect the numerical value of $\Delta_{D 2}$ (if the abundance ratio of D is significantly small). This is the reason why we use the ratio of change of the molar ratio such as $\Delta_{\mathrm{D} 2}$ and Δ_{47} (next question).

In general, as described in the example above, the molar ratio of the doubly-substituted isotopologue that contains two heavy isotope atoms in one molecule increases as the temperature decreases. Let us consider the molar ratio of CO_{2} molecules with molecular weights of 44 and 47, which are described as $\mathrm{CO}_{2}[44]$ and $\mathrm{CO}_{2}[47]$ below. The quantity Δ_{47} is defined as:

$$
\begin{equation*}
\Delta_{47}=\frac{R_{47}}{R_{47}{ }^{*}}-1 \tag{14}
\end{equation*}
$$

R_{47} refers to $\left[\mathrm{CO}_{2}[47]\right]$ / $\left[\mathrm{CO}_{2}[44]\right]$ in the sample and $R_{47}{ }^{*}$ to $\left[\mathrm{CO}_{2}[47]\right] /\left[\mathrm{CO}_{2}[44]\right]$ at $T \rightarrow+\infty$. The natural abundances of carbon and oxygen atoms are shown below; ignore isotopes that are not shown here.

	${ }^{12} \mathrm{C}$	${ }^{13} \mathrm{C}$
natural abundance	0.988888	0.011112

	${ }^{16} \mathrm{O}$	${ }^{17} \mathrm{O}$	${ }^{18} \mathrm{O}$
natural abundance	0.997621	0.000379	0.002000

A. 6 List all possible isotopologues of CO_{2} [47], indicating the isotopes of carbon and oxygen explicitly (for example: ${ }^{12} \mathrm{C}^{16} \mathrm{O}_{2}$). Indicate which is the most common isotopologue among these.

```
\mp@subsup{}{}{13}\mp@subsup{\textrm{C}}{}{16}\mp@subsup{\textrm{O}}{}{18}\textrm{O},\mp@subsup{}{}{12}\mp@subsup{\textrm{C}}{}{17}\mp@subsup{\textrm{O}}{}{18}\textrm{O},\mp@subsup{}{}{13}\mp@subsup{\textrm{C}}{}{17}\mp@subsup{\textrm{O}}{2}{}
Most common isotopologue: }\mp@subsup{}{}{13}\mp@subsup{\textrm{C}}{}{16}\mp@subsup{\textrm{O}}{}{18}\textrm{O
```

The temperature dependence of Δ_{47} is determined as follows, where T is given as the absolute temperature in units of K: [Geochim. Cosmochim. Acta 61, 3461 (1997)]

$$
\begin{equation*}
\Delta_{47}=\frac{36.2}{T^{2}}+2.920 \times 10^{-4} \tag{15}
\end{equation*}
$$

A. 7 The R_{47} of fossil plankton obtained from the Antarctic seabed was 4.50865×10^{-5}. Estimate the temperature using this R_{47}. This temperature is interpreted as the air temperature during the era in which the plankton lived. Consider only the most common isotopologue of CO_{2} [47] for the calculation. [Paleoceanography 30, 1305 (2015)]

```
The molar ratio of }\mp@subsup{}{}{13}\mp@subsup{\textrm{C}}{}{16}\mp@subsup{\textrm{O}}{}{18}\textrm{O}\mathrm{ in the case where all the isotopes are distributed randomly is 0.011112
<0.002000 }\times0.997621\times2 [O is indistinguishable] = 4.43423\times1\mp@subsup{0}{}{-5}
The molar ratio of }\mp@subsup{}{}{12}\mp@subsup{\textrm{C}}{}{16}\mp@subsup{\textrm{O}}{2}{}\mathrm{ in the case where all the isotopes are distributed randomly is 0.988888
\times0.9976212}=9.84188\times1\mp@subsup{0}{}{-1}
R47* = 4.43423\times1\mp@subsup{0}{}{-5}/9.84188\times1\mp@subsup{0}{}{-1}=4.50547\times1\mp@subsup{0}{}{-5}
\Delta47 = 7.06 * 10-4
T=296 K
```

One of the technical problems for this method is the requirement of high-accuracy measurement of $R 47$. This is the reason why the use of doubly-substituted isotopologue has not been popular yet.

Question 3: Lambert-Beer Law?

In this problem, ignore the absorption of the cell and the solvent. The temperatures of all solutions and gases are kept constant at $25^{\circ} \mathrm{C}$.

The following Part A is not included in the official IChO Problems 2021 because of the IChO exam length regulation.

Part A

A. 1 The absorption value of an aqueous solution of substances A and B, which do not interact with each other, was 1.00 at the wavelength of λ_{1}. This solution was diluted twice using pure water. Choose one of the correct absorption values of this diluted solution at λ_{1}.

```
\squareLess than 0.50 ■0.50
More than 0.50
```

A. 2 The absorbance values of hydrochloric acid with $\mathrm{pH}=3$ containing a small amount of methyl orange ($\mathrm{p} K_{\mathrm{a}}=3.5$), which is used as a pH indicator, at wavelengths of $400 \mathrm{~nm}, 465 \mathrm{~nm}$, and 500 nm were A_{400}, A_{465}, and A_{500}, respectively. This solution was diluted 10 times using pure water. Choose one of the correct absorption values of this diluted solution at wavelengths of $400 \mathrm{~nm}, 465 \mathrm{~nm}$, and 500 nm . Refer to the absorption spectrum of methyl orange (Fig. 1) if necessary. The Isosbestic points of methyl orange exist at wavelengths of 352 nm and 465 nm.

Fig. 1 Absorption spectra of methyl orange solution with $\mathrm{pH}=3.0$ and 4.0. The concentration of methyl orange for both solutions is the same. [RSC Adv., 10, 11311 (2020)]

At 400 nm :

$$
\square \text { Less than } A_{400} / 10\left(<A_{400} / 10\right) \quad \square A_{400} / 10 \quad \square \text { More than } A_{400} / 10\left(>A_{400} / 10\right)
$$

At 465 nm :
\square Less than $A_{465} / 10\left(<A_{465} / 10\right) \quad \square A_{465} / 10 \quad \square$ More than $A_{465} / 10\left(>A_{465} / 10\right)$

At 500 nm :

- Less than $A_{500} / 10\left(<A_{500} / 10\right) \quad \square A_{500} / 10 \quad \square$ More than $A_{500} / 10$ (> $\left.A_{500} / 10\right)$

Note that the pH after dilution is 4 and therefore the composition of protonated and deprotonated species changes by the dilution.

The message of Part A is that Lambert-Beer law holds only when the chemicals do not show any chemical change (such as acid-base equilibrium). Through the use of this fact, we made a seemingly mysterious situation in Part B; absorbance does not change even if the solution was diluted.

Part B

An aqueous solution \mathbf{X} was prepared using AH and NaA . The concentrations $\left[\mathrm{A}^{-}\right],[\mathrm{AH}]$, and $\left[\mathrm{H}^{+}\right]$in solution \mathbf{X} are $1.00 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}, 1.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$, and $1.00 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$, respectively, which are correlated via the following acid-base equilibrium:

$$
\begin{equation*}
\mathrm{AH} \nRightarrow \mathrm{~A}^{-}+\mathrm{H}^{+} \quad K=\frac{\left[\mathrm{A}^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{AH}]} \tag{1}
\end{equation*}
$$

The optical path length was / in Part B. Ignore the density change upon dilution. Assume that no chemical reactions other than eq 1 occur.
B. 1 The absorbance of \mathbf{X} was A_{2} at a wavelength of λ_{2}. Then, solution \mathbf{X} was diluted to twice its initial volume using hydrochloric acid with $\mathrm{pH}=2.500$. The absorbance of the diluted solution was also A_{2} at λ_{2}. Calculate the ratio of $\varepsilon_{A H}: \varepsilon_{A}$, where $\varepsilon_{A H}$ and ε_{A} represent the absorption coefficients of $A H$ and of A^{-}, respectively, at λ_{2}.

$$
K=\frac{\left[\mathrm{A}^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{AH}]}=\frac{\left(1.00 \times 10^{-2}\right)\left(1.00 \times 10^{-4}\right)}{1.00 \times 10^{-3}}=1.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}
$$

Concentrations before the dilution:
$[\mathrm{AH}]=1.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$
$\left[\mathrm{A}^{-}\right]=1.00 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$
$\left[\mathrm{H}^{+}\right]=1.00 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$

Concentrations just after the dilution (nominal initial concentrations before the equilibrium):
$[\mathrm{AH}]=5.00 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$
$\left[\mathrm{A}^{-}\right]=5.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$
$\left[\mathrm{H}^{+}\right]=\left(1.00 \times 10^{-4}+3.16 \times 10^{-3}\right) / 2=1.63 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$
$\left(\mathrm{pH}=2.500 \rightarrow\left[\mathrm{H}^{+}\right]=3.16 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}\right)$

Equilibrium after the dilution:
$\frac{\left[\mathrm{A}^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{AH}]}=\frac{\left(5.00 \times 10^{-3}-x\right)\left(1.63 \times 10^{-3}-x\right)}{\left(5.00 \times 10^{-4}+x\right)}=1.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$

Solve the equation for $x: x=1.19 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$
$\rightarrow\left[\mathrm{A}^{-}\right]=3.81 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1},[\mathrm{AH}]=1.69 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$
Therefore,

$$
1.00 \times 10^{-2} \varepsilon_{\mathrm{A}}+1.00 \times 10^{-3} \varepsilon_{\mathrm{AH}}=3.81 \times 10^{-3} \varepsilon_{\mathrm{A}}+1.69 \times 10^{-3} \varepsilon_{\mathrm{AH}}
$$

By solving this equation: $\underline{\varepsilon}_{A H}=9.0 \varepsilon_{A}$

In the case where $\varepsilon_{\text {AH }}>9.0 \varepsilon_{\text {A }}$, absorbance at λ_{2} increases by dilution! We would like to emphasize that the concentration of chemicals fulfills conservation law even under such a seemingly mysterious situation.

The following question B. 2 is not included in the official IChO Problems 2021 because of the IChO exam length regulation.
B. 2 X was diluted to four times its initial volume using hydrochloric acid with a certain pH value. The absorbance of this diluted solution was also A_{2} at λ_{2}. Calculate the pH value of the hydrochloric acid used for the dilution.

Concentrations before the dilution:
$\frac{\left[\mathrm{A}^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{AH}]}=\frac{\left(1.00 \times 10^{-2}\right)\left(1.00 \times 10^{-4}\right)}{1.00 \times 10^{-3}}=1.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$

Concentrations after the dilution:
$\frac{\left[\mathrm{A}^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{AH}]}=\frac{\left(2.50 \times 10^{-3}-x\right)\left[\mathrm{H}^{+}\right]}{\left(2.50 \times 10^{-4}+x\right)}=1.00 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$

As the absorbance is not changed by the dilution, the following relationship holds:

$$
1.00 \times 10^{-2} \varepsilon_{\mathrm{A}}+1.00 \times 10^{-3} \varepsilon_{\mathrm{AH}}=\left(2.50 \times 10^{-3}-x\right) \varepsilon_{\mathrm{A}}+\left(2.50 \times 10^{-4}+x\right) \varepsilon_{\mathrm{AH}}
$$

Solve the equation for x using $\varepsilon_{\mathrm{AH}}=9.0 \varepsilon_{\mathrm{A}}: x=1.8 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$ $\rightarrow\left[A^{-}\right]=7.2 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1},[\mathrm{AH}]=2.0 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$

Using these values provides the concentration of protons after the dilution: $\left[\mathrm{H}^{+}\right]=2.8 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$ Let the concentration of the hydrochloric acid used for the dilution be C :
$\left[\left(3 C+1.00 \times 10^{-4}\right) / 4\right]-x=2.8 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$
Solve the equation for $\mathrm{C}: \mathrm{C}=6.1 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \rightarrow \mathrm{pH}=\mathbf{2 . 2 1}$

Part C

Let us consider the following equilibrium in the gas phase.

$$
\begin{equation*}
D \neq 2 M \tag{2}
\end{equation*}
$$

This gas is filled with a cuboid container that has a transparent movable wall with a cross-section of S as shown in Fig. 2. The partial pressures of D and M are p_{D} and p_{M}, respectively. LambertBeer law also holds for the absorption value of gas: the absorption value A of the gas is the product of the absorption coefficient ε, the number density of the gas n / V (n is the mole number of the gas and V is the volume of the gas), and the optical path length of I : $A=\varepsilon(n / V) I$. Assume that the temperature of the gas was kept at a constant value and the gas is an ideal gas.

Fig. 2 A container with a transparent movable wall and the direction of absorption measurements.
C. 1 The container is filled with pure gas D at the pressure P_{0} and the volume V_{0}, and the equilibrium is achieved under constant pressure. The absorption values of the gas at the wavelength of $\lambda_{3 a}$ measured from the direction of A are $A_{3 a}$ both just after the filling (only gas D exists) and after the equilibrium is achieved. After this, the pressure was set to be P_{1} and the equilibrium is achieved. Calculate the absorption values of the gas at the wavelength of $\lambda_{3 a}$ measured from the direction of A .

Hint: First, determine the ratio $\varepsilon_{\mathrm{D}} / \varepsilon_{\mathrm{M}}$ at $\lambda_{3 \mathrm{a}}$, where ε_{D} and ε_{M} represent the absorption coefficients of D and of M, respectively.

Using the Lambert-Beer law, the absorbance of D and M at an arbitrary volume V are expressed as follows. Here, let the optical path length be l_{A}. The ideal gas law is used.

$$
\begin{aligned}
& A_{\mathrm{D}}=\varepsilon_{\mathrm{D}}\left(\frac{n_{\mathrm{D}}}{V}\right) l_{\mathrm{A}}=\varepsilon_{\mathrm{D}} \frac{p_{\mathrm{D}}}{R T} l_{\mathrm{A}} \\
& A_{\mathrm{M}}=\varepsilon_{\mathrm{M}}\left(\frac{n_{\mathrm{M}}}{V}\right) l_{\mathrm{A}}=\varepsilon_{\mathrm{M}} \frac{p_{\mathrm{M}}}{R T} l_{\mathrm{A}}
\end{aligned}
$$

First, determine the ratio $\varepsilon_{\mathrm{D}} / \varepsilon_{\mathrm{M}}$ at $\lambda_{3 a}$. There are two ways of solutions.

Solution 1:

Let the initial number of moles of D be n_{0}. The absorbance at the initial state is:

$$
A_{3 \mathrm{a}}=A_{\mathrm{D}}=\frac{\varepsilon_{\mathrm{D}} n_{0}}{V_{0}} l_{\mathrm{A}}
$$

The absorbance after equilibrium is:

$$
A_{3 \mathrm{a}}=A_{\mathrm{D}}+A_{\mathrm{M}}=\frac{\varepsilon_{\mathrm{D}} n_{\mathrm{D}}+\varepsilon_{\mathrm{M}} n_{\mathrm{M}}}{V} l_{\mathrm{A}}
$$

From the ideal gas law, the following relationship is obtained:

$$
\frac{n_{0}}{V_{0}}=\frac{P_{0}}{R T}=\frac{n_{\mathrm{D}}+n_{\mathrm{M}}}{V}
$$

From these equations, the following relationship is obtained:

$$
\begin{gathered}
A_{3 \mathrm{a}}=\frac{\varepsilon_{\mathrm{D}} n_{0}}{V_{0}} l_{\mathrm{A}}=\frac{\varepsilon_{\mathrm{D}}\left(n_{\mathrm{D}}+n_{\mathrm{M}}\right)}{V} l_{\mathrm{A}}=\frac{\varepsilon_{\mathrm{D}} n_{\mathrm{D}}+\varepsilon_{\mathrm{M}} n_{\mathrm{M}}}{V} l_{\mathrm{A}} \\
\varepsilon_{\mathrm{D}} n_{\mathrm{M}}=\varepsilon_{\mathrm{M}} n_{\mathrm{M}} \\
0=\left(\varepsilon_{\mathrm{M}}-\varepsilon_{\mathrm{D}}\right) n_{\mathrm{M}}
\end{gathered}
$$

As $n_{M}>0$ after the equilibrium, $\varepsilon_{\mathrm{D}}\left(\lambda_{3 \mathrm{a}}\right)=\varepsilon_{\mathrm{M}}\left(\lambda_{3 \mathrm{a}}\right)$ holds.

Solution 2:

The absorbance at the initial state is:

$$
A_{3 \mathrm{a}}=A_{\mathrm{D}}=\varepsilon_{\mathrm{D}} \frac{P_{0}}{R T} l_{\mathrm{A}}
$$

The absorbance after equilibrium is:

$$
A_{3 \mathrm{a}}=A_{\mathrm{D}}+A_{\mathrm{M}}=\frac{\varepsilon_{\mathrm{D}} p_{\mathrm{D}}+\varepsilon_{\mathrm{M}} p_{\mathrm{M}}}{R T} l_{\mathrm{A}}
$$

From these equations, the following relationship is obtained:

$$
A_{3 \mathrm{a}}=\varepsilon_{\mathrm{D}} \frac{P_{0}}{R T} l_{\mathrm{A}}=\frac{\varepsilon_{\mathrm{D}} p_{\mathrm{D}}+\varepsilon_{\mathrm{M}} p_{\mathrm{M}}}{R T} l_{\mathrm{A}}
$$

Using the fact that $p_{\mathrm{D}}=P_{0}-p_{\mathrm{M}}$,

$$
\begin{gathered}
\varepsilon_{\mathrm{D}} P_{0}=\varepsilon_{\mathrm{D}}\left(P_{0}-p_{\mathrm{M}}\right)+\varepsilon_{\mathrm{M}} p_{\mathrm{M}}=\varepsilon_{\mathrm{D}} P_{0}+\left(\varepsilon_{\mathrm{M}}-\varepsilon_{\mathrm{D}}\right) p_{\mathrm{M}} \\
0=\left(\varepsilon_{\mathrm{M}}-\varepsilon_{\mathrm{D}}\right) p_{\mathrm{M}}
\end{gathered}
$$

As $p_{\mathrm{M}}>0$ after the equilibrium, $\varepsilon_{\mathrm{D}}\left(\lambda_{3 \mathrm{a}}\right)=\varepsilon_{\mathrm{M}}\left(\lambda_{3 \mathrm{a}}\right)$ holds.

Lambert-Beer law at the pressure at P_{1} is as follows.

$$
A\left(p=P_{1}\right)=\left(\varepsilon_{\mathrm{D}} \frac{p_{\mathrm{D}}}{R T}+\varepsilon_{\mathrm{M}} \frac{p_{\mathrm{M}}}{R T}\right) l_{\mathrm{A}}=\varepsilon_{\mathrm{D}}\left(\frac{p_{\mathrm{D}}}{R T}+\frac{p_{\mathrm{M}}}{R T}\right) l_{\mathrm{A}}=\varepsilon_{\mathrm{D}} \frac{P_{1}}{R T} l_{\mathrm{A}}=\varepsilon_{\mathrm{D}} \frac{P_{0}}{R T} l_{\mathrm{A}} \cdot \frac{P_{1}}{P_{0}}=A_{3 \mathrm{a}} \frac{\boldsymbol{P}_{1}}{\boldsymbol{P}_{\mathbf{0}}}
$$

C. 2 The container is filled with the gas D at the pressure P_{0} and the volume V_{0}, and the equilibrium is achieved under constant pressure. The absorption values of the gas at the wavelength of $\lambda_{3 b}$ measured from the direction of B are $A_{3 b}$ both just after the filling and after the equilibrium is achieved. After this, the pressure was set to be P_{2} and the equilibrium is achieved. Calculate the absorption values of the gas at the wavelength of $\lambda_{3 b}$ measured from the direction of B.

Hint: First, determine the ratio $\varepsilon_{\mathrm{D}} / \varepsilon_{\mathrm{M}}$ at $\lambda_{3 \mathrm{~b}}$.

Using the Lambert-Beer law, the absorbance of D and M at an arbitrary volume V are expressed as follows. Here, let the optical path length be l_{B}. Note that $V=l_{\mathrm{B}} S$.

$$
\begin{aligned}
& A_{\mathrm{D}}=\varepsilon_{\mathrm{D}}\left(\frac{n_{\mathrm{D}}}{V}\right) l_{\mathrm{B}}=\varepsilon_{\mathrm{D}} \frac{n_{\mathrm{D}}}{S} \\
& A_{\mathrm{M}}=\varepsilon_{\mathrm{M}}\left(\frac{n_{\mathrm{M}}}{V}\right) l_{\mathrm{B}}=\varepsilon_{\mathrm{M}} \frac{n_{\mathrm{M}}}{S}
\end{aligned}
$$

First, determine the ratio $\varepsilon_{\mathrm{D}} / \varepsilon_{\mathrm{M}}$ at $\lambda_{3 b}$. There are two ways of solutions.

Solution 1:

Let the initial number of moles of D be n_{0}. The absorbance at the initial state (optical path length: $l_{\text {Bo }}$) is:

$$
A_{3 \mathrm{~b}}=A_{\mathrm{D}}=\frac{\varepsilon_{\mathrm{D}} n_{0}}{V_{0}} l_{\mathrm{B} 0}
$$

The absorbance after equilibrium (optical path length: l_{Bf}) is:

$$
A_{3 \mathrm{~b}}=A_{\mathrm{D}}+A_{\mathrm{M}}=\frac{\varepsilon_{\mathrm{D}} n_{\mathrm{D}}+\varepsilon_{\mathrm{M}} n_{\mathrm{M}}}{V} l_{\mathrm{Bf}}=\frac{\varepsilon_{\mathrm{D}} n_{\mathrm{D}}+\varepsilon_{\mathrm{M}} n_{\mathrm{M}}}{V} l_{\mathrm{B} 0} \frac{V}{V_{0}}=\frac{\varepsilon_{\mathrm{D}} n_{\mathrm{D}}+\varepsilon_{\mathrm{M}} n_{\mathrm{M}}}{V_{0}} l_{\mathrm{B} 0}
$$

From these equations, the following relationship is obtained:

$$
A_{3 \mathrm{~b}}=\frac{\varepsilon_{\mathrm{D}} n_{0}}{V_{0}} l_{\mathrm{B} 0}=\frac{\varepsilon_{\mathrm{D}} n_{\mathrm{D}}+\varepsilon_{\mathrm{M}} n_{\mathrm{M}}}{V_{0}} l_{\mathrm{B} 0}
$$

Using the fact that $n_{M}=2\left(n_{0}-n_{\mathrm{D}}\right)$,

$$
\begin{gathered}
\varepsilon_{\mathrm{D}} n_{0}=\varepsilon_{\mathrm{D}} n_{\mathrm{D}}+2 \varepsilon_{\mathrm{M}}\left(n_{0}-n_{\mathrm{D}}\right)=2 \varepsilon_{\mathrm{M}} n_{0}+\left(\varepsilon_{\mathrm{D}}-2 \varepsilon_{\mathrm{M}}\right) n_{\mathrm{D}} \\
\left(\varepsilon_{\mathrm{D}}-2 \varepsilon_{\mathrm{M}}\right) n_{0}=\left(\varepsilon_{\mathrm{D}}-2 \varepsilon_{\mathrm{M}}\right) n_{\mathrm{D}}
\end{gathered}
$$

As $n_{0}>n_{\mathrm{D}}$ after the equilibrium, the equality $\varepsilon_{\mathrm{D}}\left(\lambda_{3 \mathrm{~b}}\right)=2 \varepsilon_{\mathrm{M}}\left(\lambda_{3 \mathrm{~b}}\right)$ holds.

Solution 2:

Let the initial number of moles of \mathbf{D} be n_{0}. The absorbance at the initial state is:

$$
A_{3 \mathrm{~b}}=A_{\mathrm{D}}=\varepsilon_{\mathrm{D}} \frac{n_{0}}{S}
$$

The absorbance after equilibrium is:

$$
A_{3 \mathrm{~b}}=A_{\mathrm{D}}+A_{\mathrm{M}}=\varepsilon_{\mathrm{D}} \frac{n_{\mathrm{D}}}{S}+\varepsilon_{\mathrm{M}} \frac{n_{\mathrm{M}}}{S}
$$

From these equations, the following relationship is obtained:

$$
A_{3 \mathrm{~b}}=\varepsilon_{\mathrm{D}} \frac{n_{0}}{S}=\varepsilon_{\mathrm{D}} \frac{n_{\mathrm{D}}}{S}+\varepsilon_{\mathrm{M}} \frac{n_{\mathrm{M}}}{S}
$$

Using the fact that $n_{\mathrm{M}}=2\left(n_{0}-n_{\mathrm{D}}\right)$,

$$
\begin{gathered}
\varepsilon_{\mathrm{D}} n_{0}=\varepsilon_{\mathrm{D}} n_{\mathrm{D}}+2 \varepsilon_{\mathrm{M}}\left(n_{0}-n_{\mathrm{D}}\right)=2 \varepsilon_{\mathrm{M}} n_{0}+\left(\varepsilon_{\mathrm{D}}-2 \varepsilon_{\mathrm{M}}\right) n_{\mathrm{D}} \\
\left(\varepsilon_{\mathrm{D}}-2 \varepsilon_{\mathrm{M}}\right) n_{0}=\left(\varepsilon_{\mathrm{D}}-2 \varepsilon_{\mathrm{M}}\right) n_{\mathrm{D}}
\end{gathered}
$$

As $n_{0}>n_{\mathrm{D}}$ after the equilibrium, the equality $\varepsilon_{\mathrm{D}}\left(\lambda_{3 \mathrm{~b}}\right)=2 \varepsilon_{\mathrm{M}}\left(\lambda_{3 \mathrm{~b}}\right)$ holds.

Lambert-Beer law at the pressure at P_{2} is as follows.

$$
A\left(p=P_{2}\right)=\varepsilon_{\mathrm{D}} \frac{n_{\mathrm{D}}}{S}+\varepsilon_{\mathrm{M}} \frac{n_{\mathrm{M}}}{S}=\varepsilon_{\mathrm{D}} \frac{n_{\mathrm{D}}+n_{\mathrm{M}} / 2}{S}=\varepsilon_{\mathrm{D}} \frac{n_{0}}{S}=A_{3 \mathrm{~b}}
$$

These questions in Part C can be solved without calculating anything by considering what happens inside the container.

The result of $\mathbf{C} .1$ shows that the absorption value of the gas at the wavelength of $\lambda_{3 a}$ measured from the direction of A is proportional to the pressure of the container. This is because the number density of particles in the optical path is proportional to the pressure (in the case of an ideal gas), and the absorbance measured from the direction of A is determined only by the number density of particles in the optical path regardless of D or M since $\varepsilon_{D}\left(\lambda_{3 a}\right)=\varepsilon_{M}\left(\lambda_{3 a}\right)$ holds. $\varepsilon_{D}\left(\lambda_{3 a}\right)=$ $\varepsilon_{\mathrm{M}}\left(\lambda_{3 \mathrm{a}}\right)$ is obtained from the fact that the absorption value remains constant by the observation of
the absorption value under the condition of the constant pressure and optical path length after filling the gas D , which means that the absorption values do not change whether the particle in the optical path is D or M .

The result of $\mathbf{C} .2$ shows that the absorption value of the gas at the wavelength of $\lambda_{3 b}$ measured from the direction of B is independent of the pressure of the container. The absorption value measured from the direction of B is proportional to the number density of particles in the optical path multiplied by the length in the direction of B, which is proportional to the number of particles in the optical path. Because $\varepsilon_{D}\left(\lambda_{3 \mathrm{~b}}\right)=2 \varepsilon_{M}\left(\lambda_{3 \mathrm{~b}}\right)$, the absorbance measured from the direction of B is determined by the number of "monomers" M in the optical path if we count "dimer" D as " 2 monomers". In this interpretation, the number of "monomers" does not depend on the pressure and therefore the absorbance becomes constant. $\varepsilon_{\mathrm{D}}\left(\lambda_{3 \mathrm{~b}}\right)=2 \varepsilon_{\mathrm{M}}\left(\lambda_{3 \mathrm{~b}}\right)$ is obtained from the fact that the absorption value remains constant by the observation of the absorption value under the condition of the constant number of monomers (count "dimer" D as "2 monomers") after filling the gas D , which means that the absorption values do not change when the particle in the optical path changes from D to M. This result is based on only the conservation law of particles and therefore the assumption of an ideal gas is not required.

Please check the reference figure shown on the next page.

Problem 4: Redox Chemistry of Zinc

Zinc has long been used as alloys for brass and steel materials. The zinc contained in industrial wastewater is separated by precipitation to detoxify the water, and the obtained precipitate is reduced to recover and reuse it as metallic zinc.

Part A

The dissolution equilibrium of zinc hydroxide $\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})$ at $25^{\circ} \mathrm{C}$ and the relevant equilibrium constants are given in eq. 1-4.

$$
\begin{array}{cl}
\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s}) \nLeftarrow \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}), & K_{\mathrm{sp}}=1.74 \times 10^{-17} \\
\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s}) \nLeftarrow \mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{aq}), & K_{1}=2.62 \times 10^{-6} \\
\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{OH}^{-}(\mathrm{aq}) \nLeftarrow \mathrm{Zn}(\mathrm{OH})_{4}^{2-}(\mathrm{aq}), & K_{2}=6.47 \times 10^{-2} \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}), & K_{\mathrm{w}}=1.00 \times 10^{-14} \tag{4}
\end{array}
$$

The solubility, S, of zinc (concentration of zinc in a saturated aqueous solution) is given in eq. 5 .

$$
\begin{equation*}
S=\left[\mathrm{Zn}^{2+}(\mathrm{aq})\right]+\left[\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{aq})\right]+\left[\mathrm{Zn}(\mathrm{OH})_{4}{ }^{2-}(\mathrm{aq})\right] \tag{5}
\end{equation*}
$$

A. 1 When the equilibria in eq. 1-4 are established, calculate the pH range in which $\left[\mathrm{Zn}(\mathrm{OH})_{2}\right.$ $(\mathrm{aq})]$ is the greatest among $\left[\mathrm{Zn}^{2+}(\mathrm{aq})\right],\left[\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{aq})\right]$ and $\left[\mathrm{Zn}(\mathrm{OH})_{4}{ }^{2-}(\mathrm{aq})\right]$.

```
Solution 1:
From [Zn(OH)
Solve this for [OH
From [Zn(OH)}\mp@subsup{)}{2}{(aq)]>[Zn(OH)}\mp@subsup{}{4}{2-}]:\mp@subsup{K}{1}{}>\mp@subsup{K}{2}{}[\mp@subsup{\textrm{OH}}{}{-}\mp@subsup{]}{}{2
Solve this for [OH-}]: pH < 11.
Thus,

Solution 2:
From (1):
\(\log \left[\mathrm{Zn}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=\log K_{\text {sp }}\)
\(\log \left[\mathrm{Zn}^{2+}\right]=\log K_{\text {sp }}-2 \log \left[\mathrm{OH}^{-}\right]\)
From (2):
\(\log \left[\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{aq})\right]=\log K_{1}\)
\(\left[\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{aq})\right]>\left[\mathrm{Zn}^{2+}(\mathrm{aq})\right]:\)
\(\log K_{\text {sp }}-2 \log \left[\mathrm{OH}^{-}\right]<\log K_{1}\)
\(\log K_{\text {sp }}-2(-14+\mathrm{pH})<\log K_{1}\)
From (3):
\(\log \left[\mathrm{Zn}(\mathrm{OH})_{4}^{2-}\right] /\left[\mathrm{OH}^{-}\right]^{2}=\log K_{2}\)
\(\log \left[\mathrm{Zn}(\mathrm{OH})_{4}^{2-}\right]=2 \log \left[\mathrm{OH}^{-}\right]+\log K_{2}\)
\(\left[\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{aq})\right]>\left[\mathrm{Zn}(\mathrm{OH})_{4}^{2-}\right]:\)
\(\log K_{1}>2 \log \left[\mathrm{OH}^{-}\right]+\log K_{2}\)
\(\log K_{1}>2(-14+\mathrm{pH})+\log K_{2}\)
Thus,


Fig. pH dependences of each species
A. 2 A saturated aqueous solution of \(\mathrm{Zn}(\mathrm{OH})_{2}\) (s) with \(\mathrm{pH}=7.00\) was prepared and filtered. NaOH was added to this filtrate to increase its pH to 12.00. Calculate the molar percentage of zinc that precipitates when increasing the pH from 7.00 to 12.00 . Ignore the volume and temperature changes.

For \(\mathrm{pH}=12.00\) :
\(\log \left[\mathrm{Zn}(\mathrm{OH})_{4}^{2-}\right]=-29.19+2 \mathrm{pH}=-5.19\)
\(\log \left[\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{aq})\right]=-5.58\)
\(\log \left[\mathrm{Zn}^{2+}\right]=11.24-2 \mathrm{pH}=-12.76\) (negligible)
Thus,
\[
S=9.0865 \times 10^{-6} \mathrm{~mol} \mathrm{~L}^{-1}
\]

For \(\mathrm{pH}=7.00\) :
\(\log \left[\mathrm{Zn}^{2+}\right]=11.24-2 \mathrm{pH}=-2.76\)
\(\log \left[\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{aq})\right]=-5.58\)
\(\log \left[\mathrm{Zn}(\mathrm{OH})_{4}^{2-}\right]=-29.19+2 \mathrm{pH}=-15.19\) (negligible)
Thus,
\[
S=1.7404 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}
\]

The percentage of zinc precipitated is:
\[
\begin{gathered}
\frac{1.7404-0.0090865}{1.7404}=0.9948 \\
=99.5 \%
\end{gathered}
\]

In Part A, we consider from the viewpoint of the equilibrium constant that the saturated solubility of zinc hydroxide, which is a poorly soluble salt, increases as the acidity or basicity increases. This is because the salt dissolves as a zinc ion when it is acidic and as a complex ion when it is basic. Since the saturated solubility changes according to the exponential function with respect to pH , it was shown that most of the zinc present in the aqueous solution can be recovered as a precipitate by appropriately changing the pH .

\section*{Part B}

Next, the recovered zinc hydroxide is heated to obtain zinc oxide according to the reaction below:
\[
\begin{equation*}
\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s}) \rightarrow \mathrm{ZnO}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \tag{6}
\end{equation*}
\]

The zinc oxide is then reduced to metallic zinc by reaction with hydrogen:
\[
\begin{equation*}
\mathrm{ZnO}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{Zn}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \tag{7}
\end{equation*}
\]
B. 1 In order for reaction (7) to proceed at a hydrogen pressure kept at 1 bar, it is necessary to reduce the partial pressure of the generated water vapor. Calculate the upper limit for the partial pressure of water vapor to allow reaction (7) to proceed at \(300^{\circ} \mathrm{C}\). Here, the Gibbs formation energies of the zinc oxide and water vapor at \(300^{\circ} \mathrm{C}\) and 1 bar are \(\Delta G_{\mathrm{ZnO}}\left(300^{\circ} \mathrm{C}\right)\) \(=-2.90 \times 10^{2} \mathrm{~kJ} \mathrm{~mol}^{-1}\) and \(\Delta G_{\mathrm{H} 2 \mathrm{O}}\left(300^{\circ} \mathrm{C}\right)=-2.20 \times 10^{2} \mathrm{~kJ} \mathrm{~mol}^{-1}\), respectively.
\(\mathrm{Zn}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{ZnO}, \Delta G_{\mathrm{Zno}}\left(300^{\circ} \mathrm{C}\right)=-2.90 \times 10^{2} \mathrm{~kJ} \mathrm{~mol}^{-1}\)
\(\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}, \Delta G_{\mathrm{H}_{2} \mathrm{O}}\left(300^{\circ} \mathrm{C}\right)=-2.20 \times 10^{2} \mathrm{~kJ} \mathrm{~mol}^{-1}\)
Thus,
\(\mathrm{ZnO}+\mathrm{H}_{2} \rightarrow \mathrm{Zn}+\mathrm{H}_{2} \mathrm{O}, \Delta G=\Delta G_{\mathrm{H}_{2} \mathrm{O}}\left(300^{\circ} \mathrm{C}\right)-\Delta G_{\mathrm{ZnO}}\left(300^{\circ} \mathrm{C}\right)\)
\[
\Delta G=-\Delta G_{1}+\Delta G_{2}=7.0 \times 10^{1} \mathrm{~kJ} \mathrm{~mol}^{-1}
\]
\(\ln K=\ln \frac{p_{\mathrm{H} 2 \mathrm{O}}}{p_{\mathrm{H} 2}}=-\frac{\Delta G}{R T}\)
From \(T=573.15 \mathrm{~K}\),
\(p_{\mathrm{H} 2 \mathrm{O}}=4.14 \times 10^{-7} \mathrm{bar}=4.1 \times 10^{-7} \mathrm{bar}\)

The reduction reaction of zinc oxide with hydrogen does not proceed in the standard state because the standard Gibbs energy change is positive. However, the Gibbs energy change becomes negative by lowering the partial pressure of the product (water vapor), and thus, the reaction proceeds. Thus, the Gibbs energy change can be increased or decreased by controlling the partial pressure in most cases (when the product or reactant contains a gas).

Metallic zinc is used as a negative electrode (anode) material for metal-air batteries. The electrode consists of Zn and ZnO . It uses the following redox reaction to generate electricity with the electromotive force (e.m.f.) at \(25^{\circ} \mathrm{C}\) and pressure of \(1 \mathrm{bar}, E^{\circ}\).
\[
\begin{equation*}
\mathrm{Zn}(\mathrm{~s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{ZnO}(\mathrm{~s}), \quad E^{\circ}=1.65 \mathrm{~V} \tag{8}
\end{equation*}
\]
B. 2 A zinc-air battery was discharged at 20 mA for 24 hours. Calculate the change in mass of the negative electrode (anode) of the battery.

The reaction \(\mathrm{Zn}+2 \mathrm{OH}^{-} \rightarrow \mathrm{ZnO}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}\)occurs at the negative electrode and consumes 2 mol electrons per mol Zn oxidized.

Thus, the weight change is:
\[
\begin{gathered}
W=\frac{0.02 \mathrm{~A} \times 24 \times 60 \times 60}{2 F} \times 16 \\
=0.14 \mathrm{~g}
\end{gathered}
\]

We consider the reaction that occurs at the electrode of zinc-air battery when it is discharged, and calculate the amount of zinc oxide deposited from Faraday's law.
B. 3 Consider the change of e.m.f. of a zinc-air battery depending on the environment. Calculate the e.m.f. at the summit of Mt. Fuji, where the temperature and altitude are \(-38^{\circ} \mathrm{C}\) (February) and 3776 m , respectively. The atmospheric pressure is represented by
\[
\begin{equation*}
P[\text { bar }]=1.013 \times\left(1-\frac{0.0065 h}{T+0.0065 h+273.15}\right)^{5.257} \tag{9}
\end{equation*}
\]
at altitude \(h[\mathrm{~m}]\) and temperature \(T\left[^{\circ} \mathrm{C}\right]\). The molar ratio of oxygen in the atmosphere is \(21 \%\). The Gibbs energy change of reaction (8) is \(\Delta G_{\mathrm{ZnO}}\left(-38{ }^{\circ} \mathrm{C}\right)=-3.26 \times 10^{2} \mathrm{~kJ} \mathrm{~mol}^{-1}(1\) bar \()\).


Mt. Fuji

\section*{Solution 1:}

From (9), the air pressure at 3776 m and \(T=-38^{\circ} \mathrm{C}\) is
\[
P=0.6011 \text { bar }
\]

From the oxygen content of \(21 \%\), the partial pressure of oxygen is:
\[
P_{\mathrm{O}_{2}}=0.126 \mathrm{bar}
\]

From the Nernst equation \(\left(T=-38^{\circ} \mathrm{C}\right)\) :
\(E\left(-38^{\circ} \mathrm{C}\right)-E^{\circ}\left(-38^{\circ} \mathrm{C}\right)=-\frac{R T}{2 F} \ln \frac{1}{\sqrt{P_{\mathrm{O}_{2}}}}=-0.01048 \mathrm{~V}=-0.01 \mathrm{~V}\)
\(E^{\circ}\left(-38^{\circ} \mathrm{C}\right)=-\frac{\Delta G^{\circ}\left(-38^{\circ} \mathrm{C}\right)}{2 F}=\frac{326000}{2 F}=1.6894 \mathrm{~V}=1.69 \mathrm{~V}\)
Thus,
\[
E\left(-38^{\circ} \mathrm{C}\right)=1.68 \mathrm{~V}
\]

Solution 2:
From (9), the air pressure at 3776 m and \(T=-38^{\circ} \mathrm{C}\) is
\[
P=0.6011 \text { bar }
\]

From the oxygen content of \(21 \%\), the partial pressure of oxygen is:
\[
P_{\mathrm{O}_{2}}=0.126 \mathrm{bar}
\]
\(\Delta G\left(-38^{\circ} \mathrm{C}\right)=\Delta G^{\circ}\left(-38{ }^{\circ} \mathrm{C}\right)-\frac{1}{2} R T \ln P_{\mathrm{O}_{2}}=-3.24 \times 10^{2} \mathrm{~kJ} \mathrm{~mol}^{-1}\)
Thus,
\[
\begin{aligned}
E\left(-38^{\circ} \mathrm{C}\right) & =-\frac{\Delta G\left(-38^{\circ} \mathrm{C}\right)}{2 F} \\
& =1.68 \mathrm{~V}
\end{aligned}
\]
( \({ }^{\circ}\) is used for 1 bar)

We consider how the electromotive force of a zinc-air battery depends on temperature and pressure. The Nernst equation is used in order to study the dependence of the electromotive force on the pressure and temperature (Solution 1). It can also be obtained from Gibbs energy (Solution 2). The Nernst equation is the same with the pressure dependence of Gibbs energy, both of which are ascribed to the pressure dependence of entropy.
B. 4 Calculate the Gibbs energy change for reaction (6) at \(25^{\circ} \mathrm{C}\). Note that the standard reduction potentials, \(E^{\circ}\left(\mathrm{Zn}^{2+} / \mathrm{Zn}\right)\) and \(E^{\circ}\left(\mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}\right)\) at \(25^{\circ} \mathrm{C}\) and 1 bar are given as (10) and (11), respectively.
\[
\begin{array}{cl}
\mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}, & E^{\circ}\left(\mathrm{Zn}^{2+} / \mathrm{Zn}\right)=-0.77 \mathrm{~V} \\
\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}, & E^{\circ}\left(\mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}\right)=1.23 \mathrm{~V}
\end{array}
\]

From (10):
\(\mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}, E^{\circ}=-0.77 \mathrm{~V}\)
\(\Delta G^{\circ}=-2 F \times-0.77=148.61 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
From (8):
\(\mathrm{Zn}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{ZnO}, E^{\circ}=1.65 \mathrm{~V}\)
\(\Delta G^{\circ}=-2 F \times 1.65=-318.45 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
From (11) :
\(\mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}, E^{\circ}=1.23 \mathrm{~V}\)
\(\Delta G^{\circ}=-4 \times F \times 1.23=-474.71 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
From (1):
\(\mathrm{Zn}^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s}), K_{\text {sp }}=1.74 \times 10^{-17}\)
\(\Delta G^{\circ}=-R T \ln K_{\mathrm{sp}}^{-1}=-95.612 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
From (4):
\(\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}, K_{\mathrm{w}}=1 \times 10^{-14}\)
\(\Delta G^{\circ}=-R T \ln K_{\mathrm{w}}^{-1}=-79.912 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(5^{\prime}\right)\)

From \(\frac{\left(1^{\prime}\right) \times 2+\left(2^{\prime}\right) \times 2-\left(3^{\prime}\right)-\left(4^{\prime}\right) \times 2+\left(5^{\prime}\right) \times 4}{2}\) :
\[
\begin{gathered}
\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s}) \rightarrow \mathrm{ZnO}+\mathrm{H}_{2} \mathrm{O}, \\
\Delta G^{\circ}=3.0 \sim 3.4 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{gathered}
\]
(distributed depending on the handling of figures)

The Gibbs energy change of the decomposition reaction of zinc hydroxide is calculated by combining those of the four elementary reactions. The electromotive force, solubility product, equilibrium constant, etc. are given for each elementary reaction, but it should be understood that all of these can be associated with the Gibbs energy change of each elementary reaction.

\section*{Question 5: Mysterious Silicon}


Although silicon is also a group-14 element like carbon, their properties differ significantly.

\section*{Part A}

Unlike the carbon-carbon triple bond, the silicon-silicon triple bond in a compound formulated as \(\mathrm{R}^{1}-\mathrm{Si}=\mathrm{Si}-\mathrm{R}^{1}\) (R: organic substituent) is extremely reactive. For example, it reacts with ethylene to form a cyclic product that contains a four-membered ring.


When \(\mathrm{R}^{1}-\mathrm{Si} \equiv \mathrm{Si}-\mathrm{R}^{1}\) is treated with an alkyne ( \(\mathrm{R}^{2}-\mathrm{C} \equiv \mathrm{C}-\mathrm{R}^{2}\) ), the four-membered-ring compound \(\mathbf{A}\) is formed as an initial intermediate. Further reaction of another molecule of \(R^{2}-C=C-R^{2}\) with \(\mathbf{A}\) affords isomers \(\mathbf{B}\) and \(\mathbf{C}\), both of which have benzene-like cyclic conjugated structures, so-called 'disilabenzenes' that contain a six-membered ring and can be formulated as \(\left(\mathrm{R}^{1}-\mathrm{Si}\right)_{2}\left(\mathrm{R}^{2}-\mathrm{C}\right)_{4}\). The \({ }^{13} \mathrm{C}\) NMR analysis of the corresponding six-membered ring skeletons \(\mathrm{Si}_{2} \mathrm{C}_{4}\) shows two signals for B and one signal for \(\mathbf{C}\).
\[
\mathrm{R}^{1}-\mathrm{Si} \equiv \mathrm{Si}-\mathrm{R}^{1}+\mathrm{R}^{2}-\mathrm{C} \equiv \mathrm{C}-\mathrm{R}^{2} \longrightarrow \mathrm{~A} \xrightarrow{\mathrm{R}^{2}-\mathrm{C} \equiv \mathrm{C}-\mathrm{R}^{2}} \mathrm{~B}+\mathbf{C}
\]
A. 1 Draw the structural formulae of \(\mathbf{A}, \mathbf{B}\), and \(\mathbf{C}\) using \(R^{1}, R^{2}, S i\), and \(C\).


Intermediate \(\mathbf{A}\) is a four-membered ring compound, which is formed by the addition of an alkyne \(\mathrm{R}^{2} \mathrm{C} \equiv \mathrm{CR}^{2}\) to \(\mathrm{R}^{1} \mathrm{Si} \equiv \mathrm{SiR}^{1}\). In consideration of the \([2+2]\) cycloaddition reaction of \(\mathrm{R}^{1} \mathrm{Si}=\mathrm{SiR}^{1}\) with ethylene giving the corresponding \(\mathrm{Si}=\mathrm{Si}-\mathrm{C}-\mathrm{C}\) - four-membered ring, compound \(\mathbf{A}\) is assumed to be a 1,2-disilacyclobutadiene derivative with \(-\mathrm{Si}=\mathrm{Si}-\mathrm{C}=\mathrm{C}\) - skeleton. When another molecule of acetylene is inserted into the Si-C moiety of intermediate \(\mathbf{A}\), the corresponding 1,2-disilabenzene is formed. On the other hand, when acetylene is inserted into the Si-Si moiety of \(\mathbf{A}\), the corresponding 1,4-disilabenzene is formed. It should be helpful information that the product is noted as "disilabenzene \(\mathrm{Si}_{2} \mathrm{C}_{4}\)," and the structural formulas of H -substituted disilabenzenes are shown in Figure 1. Based on the information that \({ }^{13} \mathrm{C}\) NMR spectra of compounds \(\mathbf{B}\) and \(\mathbf{C}\) show that two signals and one signal, respectively, compound \(\mathbf{B}\) is the 1,2-disilabenzene and compound C is the 1,4-disilabenzene.
A. 2 Calculate the aromatic stabilization energy \(\left[\mathrm{kJ} \mathrm{mol}^{-1}\right]\) for benzene and \(\mathbf{C}\) (in the case of \(\mathrm{R}^{1}=\) \(\mathrm{R}^{2}=\mathrm{H}\) ) as positive values, using Fig. 1.
\[
\begin{equation*}
\mathbf{H}_{2} \mathbf{C}=\mathbf{C H}_{2} \quad+\mathrm{H}_{2} \longrightarrow \mathbf{H}_{3} \mathbf{C}-\mathbf{C H}_{3} \quad \Delta H=-135 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \tag{1}
\end{equation*}
\]
\[
\begin{equation*}
\mathbf{H}_{2} \mathbf{S i}=\mathbf{C H}_{2} \quad+\quad \mathrm{H}_{2} \quad \longrightarrow \quad \mathbf{H}_{3} \mathbf{S i}-\mathbf{C H}_{\mathbf{3}} \quad \Delta H=-213 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \tag{2}
\end{equation*}
\]
\[
\begin{equation*}
\mathbf{H}_{2} \mathbf{S i}=\mathbf{S i H}_{2} \quad+\quad \mathrm{H}_{2} \quad \longrightarrow \quad \mathbf{H}_{3} \mathbf{S i}-\mathbf{S i H}_{3} \quad \Delta H=-206 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \tag{3}
\end{equation*}
\]





Fig. 1 Enthalpy change in some hydrogenation reactions of unsaturated systems.

\footnotetext{
The aromatic stabilization energy (ASE) can be calculated as the difference of the sum of the heat of hydrogenation of each double bond and the heat of hydrogenation of the aromatic compound. ASE for benzene: \(135 \times 3-173=232 \mathrm{~kJ} \mathrm{~mol}^{-1}\)
ASE for 1,4-disilabenzene (C=C + 2 Si=C): \((135+213 \times 2)-389=\underline{172 \mathrm{~kJ} \mathrm{~mol}^{-1}}\)
}
A. 3 When a xylene solution of \(\mathbf{C}\) is heated, it undergoes isomerization to give an equilibrium mixture of compounds \(\mathbf{D}\) and \(\mathbf{E}\). The molar ratio is \(\mathbf{D}: \mathbf{E}=1: 40.0\) at \(50.0^{\circ} \mathrm{C}\) and \(\mathbf{D}: \mathbf{E}=1\) : 20.0 at \(120.0^{\circ} \mathrm{C}\). Calculate \(\Delta H\left[\mathrm{~kJ} \mathrm{~mol}^{-1}\right]\) for the transformation of \(\mathbf{D}\) to \(\mathbf{E}\). Assume that \(\Delta H\) does not depend on temperature.
```

T=50 }\mp@subsup{}{}{\circ}\textrm{C}=323.15\textrm{K}(1/RT=0.3722): K KDE = 40
T=120 呂 = 393.15 K (1/RT = 0.3059): KDE = 20
According to In K}\mp@subsup{K}{\textrm{DE}}{}=-(\DeltaH%/RT)+\Delta\mp@subsup{S}{}{\circ}/R
\DeltaHo}=-(|n 40-In 20) / (0.3722-0.3059) =-10.5 \mp@subsup{\textrm{kJ mol}}{}{-1

```
A. 4 The isomerization from \(\mathbf{C}\) to \(\mathbf{D}\) and to \(\mathbf{E}\) proceeds via transformations of m-bonds into \(\sigma\)-bonds without breaking any \(\sigma\)-bonds. A \({ }^{13} \mathrm{C}\) NMR analysis revealed one signal for the \(\mathrm{Si}_{2} \mathrm{C}_{4}\) skeleton of \(\mathbf{D}\) and two signals for that of \(\mathbf{E}\). The skeleton of \(\mathbf{D}\) does not contain any three-membered rings, while \(\mathbf{E}\) has two three-membered rings that share an edge. Draw the structural formulae of \(\mathbf{D}\) and \(\mathbf{E}\) using \(\mathrm{R}^{1}, \mathrm{R}^{2}\), Si , and C .

Based on the signals observed in the \({ }^{13} \mathrm{C}\) NMR spectra, the following structures could be suggested for \(\mathbf{D}\) and \(\mathbf{E}\) :


(DW: Dewar benzene type, PS: Prismane type, BZ: Benzvalene type)

In addition, considering that \(\mathbf{D}\) has no three-membered ring in its skeleton while \(\mathbf{E}\) has two three-membered rings that share an edge, the structures of \(\mathbf{D}\) and \(\mathbf{E}\) can be determined to be those shown below:



\section*{Part B.}

Silicon is able to form highly coordinated compounds (> four substituents) with electronegative elements such as fluorine. As metal fluorides are often used as fluorination reagents, highly coordinated silicon fluorides also act as fluorination reagents.
The fluorination reaction of \(\mathrm{CCl}_{4}\) using \(\mathrm{Na}_{2} \mathrm{SiF}_{6}\) was carried out as follows.

\section*{Quantification of \(\mathrm{Na}_{2} \mathrm{SiF}_{6}\) :}
-Preparation
Aqueous solution \(\mathbf{F}: 0.855 \mathrm{~g}\) of \(\mathrm{Na}_{2} \mathrm{SiF}_{6}\) dissolved in water (total volume: 200 mL ).
Aqueous solution G: 6.86 g of \(\mathrm{Ce}_{2}\left(\mathrm{SO}_{4}\right)_{3}\) dissolved in water (total volume: 200 mL ).
- Procedure

Precipitation titration of a solution \(\mathbf{F}(50.0 \mathrm{~mL})\) by dropwise adding solution \(\mathbf{G}\) in the presence of xylenol orange, which coordinates to \(\mathrm{Ce}^{3+}\), as an indicator. After adding 18.8 mL of solution \(\mathbf{G}\), the color of the solution changes from yellow to magenta. The generated precipitate is a binary compound that contains \(\mathrm{Ce}^{3+}\), and the only resulting silicon compound is \(\mathrm{Si}(\mathrm{OH})_{4}\).

\section*{Reaction of \(\mathrm{CCl}_{4}\) with \(\mathrm{Na}_{2} \mathrm{SiF}_{6}\) :}
(Substance losses by e.g. evaporation are negligible during the following operations.)
\(\mathrm{Na}_{2} \mathrm{SiF}_{6}(x[\mathrm{~g}])\) was added to \(\mathrm{CCl}_{4}(500.0 \mathrm{~g})\) and heated to \(300^{\circ} \mathrm{C}\) in a sealed pressure-resistant reaction vessel. (a)The unreacted \(\mathrm{Na}_{2} \mathrm{SiF}_{6}\) and generated NaCl were removed by filtration. The filtrate was diluted to a total volume of 1.00 L with \(\mathrm{CCl}_{4}\) (solution H ). The \({ }^{29} \mathrm{Si}\) and \({ }^{19} \mathrm{~F}\) NMR spectra of solution H showed \(\mathrm{SiF}_{4}\) as the only silicon compound. In the \({ }^{19} \mathrm{~F}\) NMR spectrum, in addition to \(\mathrm{SiF}_{4}\), signals corresponding to \(\mathrm{CFCl}_{3}, \mathrm{CF}_{2} \mathrm{Cl}_{2}, \mathrm{CF}_{3} \mathrm{CI}\), and \(\mathrm{CF}_{4}\) were observed (cf. Table 1). The integration ratios in the \({ }^{19} \mathrm{~F}\) NMR spectrum are proportional to the number of moles of the fluorine nuclei.
\(\mathrm{SiF}_{4}\) is hydrolyzed to form \(\mathrm{H}_{2} \mathrm{SiF}_{6}\) according to equation 8:
\[
\begin{equation*}
3 \mathrm{SiF}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SiO}_{2}+2 \mathrm{H}_{2} \mathrm{SiF}_{6} \tag{8}
\end{equation*}
\]

Solution \(\mathbf{H}(10 \mathrm{~mL})\) was added to an excess amount of water, which resulted in the complete hydrolysis of \(\mathrm{SiF}_{4}\). After separation, the \(\mathrm{H}_{2} \mathrm{SiF}_{6}\) generated from the hydrolysis in the aqueous solution was neutralized and completely converted to \(\mathrm{Na}_{2} \mathrm{SiF}_{6}\) (aqueous solution J).

The precipitate of unreacted \(\mathrm{Na}_{2} \mathrm{SiF}_{6}\) and NaCl , which was removed by filtration in the initial step (underline (a)), was completely dissolved in water to give an aqueous solution (solution K; 10.0 L). Then, additional precipitation titrations using solution \(\mathbf{G}\) were carried out, and the endpoints of the titrations with \(\mathbf{G}\) were as follows:
-For solution J (entire amount): 61.6 mL .
-For 100 mL of solution K: 44.4 mL .

It should be noted here that the coexistence of NaCl or \(\mathrm{SiO}_{2}\) has no effect on the precipitation titration.

Table 1
\begin{tabular}{|c|c|c|c|c|}
\hline\({ }^{19} \mathrm{~F}\) NMR data & \(\mathrm{CFCl}_{3}\) & \(\mathrm{CF}_{2} \mathrm{Cl}_{2}\) & \(\mathrm{CF}_{3} \mathrm{Cl}\) & \(\mathrm{CF}_{4}\) \\
\hline Chemical shift \((\delta)\) & 0.0 & -8.0 & -28.6 & -62.3 \\
\hline Integration ratio & 45.0 & 65.0 & 18.0 & 2.0 \\
\hline
\end{tabular}

\section*{B. 1 Write the reaction formulae for the reaction of \(\mathrm{Na}_{2} \mathrm{SiF}_{6}\) with \(\mathrm{Ce}_{2}\left(\mathrm{SO}_{4}\right)_{3}\).}
```

Na2SiF6}=188.0[g.\mp@subsup{\textrm{mol}}{}{-1}].\mathrm{ The concentration of Na2SiF6}\mathrm{ in solution F is 0.855 g/200 mL = 4.548 ×
10-3 mol / 0.2 L = 2.274 × 10-2 mol 'L-1 (F)
Ce2(SO4)3 = 568.4 [g.mol}\mp@subsup{}{-1}{-1}\mathrm{]. The concentration of Ce2(SO4)3 in solution G is 6.860 g/200 mL =
1.207 \times 10-2 mol / 0.2 L = 6.034 \times 10-2 [mol\cdotL'-1}](G
The concentration of Ce }\mp@subsup{}{}{3+}\mathrm{ ions in G is 6.034 }\times1\mp@subsup{0}{}{-2}[\textrm{mol}\cdot\mp@subsup{\textrm{L}}{}{-1}]\times2=1.207\times1\mp@subsup{0}{}{-1}[\textrm{mol}\cdot\mp@subsup{\textrm{L}}{}{-1}
In 50.0 mL of solution F: 2.274 × 10-2 \times (50.0/1000) [mol] = 1.137 × 10-3 [mol] of Na2SiF6 was
included.
In 18.8 mL of solution G: 6.034 \times 10-2\times(18.8/1000) [mol] = 1.134 \times 10-3 [mol] of Ce2(SO4)3 was
included.
Accordingly, Na2SiF6 should react with }\mp@subsup{\textrm{Ce}}{2}{}(\mp@subsup{\textrm{SO}}{4}{}\mp@subsup{)}{3}{}\mathrm{ in a 1:1 ratio (SiF6}\mp@subsup{6}{6}{2-}\mathrm{ reacts with_Ce- in a 1:2
ratio_).
Na2SiF6}+\mp@subsup{\textrm{Ce}}{2}{}(\mp@subsup{\textrm{SO}}{4}{}\mp@subsup{)}{3}{}+4\mp@subsup{\textrm{H}}{2}{}\textrm{O}->2\mp@subsup{\textrm{CeF}}{3}{}+\textrm{Si}(\textrm{OH}\mp@subsup{)}{4}{}+\mp@subsup{\textrm{Na}}{2}{}\mp@subsup{\textrm{SO}}{4}{}+2\mp@subsup{\textrm{H}}{2}{}\mp@subsup{\textrm{SO}}{4}{

```

\section*{B. 2 Calculate the weights \([g]\) of NaCl produced and of \(\mathrm{Na}_{2} \mathrm{SiF}_{6}\) used ( \(x[\mathrm{~g}]\) ) as a starting} material.

As \(\mathrm{Na}_{2} \mathrm{SiF}_{6}\) reacts with \(\mathrm{Ce}_{2}\left(\mathrm{SO}_{4}\right)_{3}\) in a 1:1 ratio, the amount of \(\mathrm{SiF}_{6}{ }^{2-}\) in the aqueous solution J is \(6.034 \times 10^{-2}\left[\mathrm{~mol} \cdot \mathrm{~L}^{-1}\right] \times\left(61.6 \times 10^{-3}[\mathrm{~L}]\right)=3.717 \times 10^{-3}[\mathrm{~mol}]\). Considering the equation
\[
3 \mathrm{SiF}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SiO}_{2}+2 \mathrm{H}_{2} \mathrm{SiF}_{6},
\]
the ratio of the consumed \(\mathrm{SiF}_{4}\) and the generated \(\mathrm{H}_{2} \mathrm{SiF}_{6}\) should be 3:2, and therefore 10 mL of the diluted solution H contains \(3.717 \times 10^{-3}[\mathrm{~mol}] \times(3 / 2)=5.576 \times 10^{-3}[\mathrm{~mol}]\) of \(\mathrm{SiF}_{4}\). Thus, 1.00 L of diluted solution H contains \(5.576 \times 10^{-3}[\mathrm{~mol}] \times(1000 / 10)=0.5576[\mathrm{~mol}]\) of \(\mathrm{SiF}_{4}\).
The amount of fluorine atoms that replace the chlorine atoms of \(\mathrm{CCl}_{4}\) should be twice the amount of \(\mathrm{SiF}_{4}\) formed during the reaction. Thus, \(2 \times 0.5576=1.115\) [mol] of \(\mathrm{F}^{-}\)should replace \(\mathrm{Cl}^{-}\)to result in the formation of NaCl .
\(1.115[\mathrm{~mol}] \times 58.4\left[\mathrm{~g} \cdot \mathrm{~mol}^{-1}\right]=65.12[\mathrm{~g}]\) of NaCl was formed.
Answer: 65.1 [ g\(]\)

As \(\mathrm{Na}_{2} \mathrm{SiF}_{6}\) reacts with \(\mathrm{Ce}_{2}\left(\mathrm{SO}_{4}\right)_{3}\) in a \(1: 1\) ratio, the amount of \(\mathrm{SiF}_{6}{ }^{2-}\) in 100 mL of aqueous solution K is \(44.4 \times 10^{-3}[\mathrm{~L}] \times\left(6.034 \times 10^{-2}\left[\mathrm{~mol} \cdot \mathrm{~L}^{-1}\right]\right)=2.679 \times 10^{-3}[\mathrm{~mol}]\). Accordingly, the residual amount of \(\mathrm{Na}_{2} \mathrm{SiF}_{6}\) in 10.0 L of aqueous solution K is \(2.679 \times 10^{-3}\) [ mol\(] \times 100=0.2679\) [mol]. In total, the amount of \(\mathrm{Na}_{2} \mathrm{SiF}_{6}\) used as a starting material is \((0.2679[\mathrm{~mol}]+0.5576[\mathrm{~mol}]) \times 188.0\) \(\left[\mathrm{g} \cdot \mathrm{mol}^{-1}\right]=155.2[\mathrm{~g}]\)

Answer: 155 [g]

\section*{B. \(377.8 \%\) of the \(\mathrm{CCl}_{4}\) used as a starting material was unreacted. Calculate the weight [g] of \(\mathrm{CF}_{3} \mathrm{Cl}\) generated.}
\(500.0[\mathrm{~g}]=3.25[\mathrm{~mol}]\) of \(\mathrm{CCl}_{4}\) was initially used as a starting material. Thus, the amount of the products
that contain at least one \(F\) atom is \(3.25[\mathrm{~mol}] \times 0.222=0.721\) [mol].
The ratio of integrals in the \({ }^{19} \mathrm{~F}\) NMR spectrum is \(\mathrm{CFCl}_{3}: \mathrm{CF}_{2} \mathrm{Cl}_{2}: \mathrm{CF}_{3} \mathrm{CI}: \mathrm{CF}_{4}=45: 65: 18: 2.0\). Thus, the mole ratio of these compounds should be \(\mathrm{CFCl}_{3}: \mathrm{CF}_{2} \mathrm{Cl}_{2}: \mathrm{CF}_{3} \mathrm{Cl}: \mathrm{CF}_{4}=45: 32.5: 6: 0.5=90\) : 65: 12: 1.

Accordingly, the amount of \(\mathrm{CF}_{3} \mathrm{Cl}\left(104.46\left[\mathrm{~g} \cdot \mathrm{~mol}^{-1}\right]\right)\) is \(0.721[\mathrm{~mol}] \times(12 /(90+65+12+1))=\) \(0.0515[\mathrm{~mol}]=0.0515[\mathrm{~mol}] \times 104.46\left[\mathrm{~g} \cdot \mathrm{~mol}^{-1}\right]=5.38[\mathrm{~g}]\)

Answer: 5.38 [g]

\section*{Subject Intention:}
1. To learn the process of the structural identification of the unknown products based on the spectral features and the reaction patterns. To realize that an unfamiliar benzene derivative where its carbon atoms are replaced by silicon atoms, exhibits the considerable aromatic stabilization.
2. To realize that silicon compounds are one of unique main group elements that can have up to six bondings, and learn the process of quantitative understanding the phenomenon of such an unfamiliar fluorination reaction using highly coordinated silicon fluoride in a step-by-step manner based on the precipitation titration.

\section*{Problem 6. The Solid-State Chemistry of Transition Metals}


Volcano at Sakurajima island

\section*{Part A}

Japan is one of the countries with the highest numbers of volcanos. When silicate minerals crystallize from magma, a part of the transition-metal ions \(\left(\mathrm{M}^{n+}\right)\) in the magma is incorporated into the silicate minerals. The \(\mathrm{M}^{n+}\) studied in the problem are coordinated by oxide ions \(\left(\mathrm{O}^{2-}\right)\) and adopt a four-coordinate tetrahedral \(\left(T_{\mathrm{d}}\right)\) geometry in the magma and six-coordinate octahedral ( \(O_{\mathrm{h}}\) ) geometry in the silicate minerals, both of which exhibit a high-spin electron configuration. The distribution coefficient of \(\mathrm{M}^{n+}\) between the silicate minerals and magma, \(K_{\mathrm{p}}\), can be expressed by:
\[
\begin{equation*}
K_{\mathrm{p}}=\frac{[\mathrm{M}]_{\mathrm{s}}}{[\mathrm{M}]_{\mathrm{I}}} \tag{1}
\end{equation*}
\]
where \([M]_{s}\) and \([M]_{1}\) are the concentrations of \(M^{n+}\) in the silicate minerals and the magma, respectively. Table 1 shows the \(K_{p}\) values of \(\mathrm{Cr}^{2+}, \mathrm{Mn}^{2+}\), and \(\mathrm{Fe}^{2+}\). \(\mathrm{Fe}^{2+}\) in Table 1 is not included in the official IChO Problems 2021 because of potential difficulty in marking by following the IChO marking regulation.

Table 1
\begin{tabular}{cccc}
\hline & \(\mathrm{Cr}^{2+}\) & \(\mathrm{Mn}^{2+}\) & \(\mathrm{Fe}^{2+}\) \\
\hline\(K_{\mathrm{p}}\) & 7.2 & 1.1 & 2.0 \\
\hline
\end{tabular}

Let \(\Delta_{\mathrm{o}}\) and \(\Delta_{\mathrm{o}}{ }^{M}\) be the energy separation of the d-orbitals of \(\mathrm{M}^{n+}\) and the crystal-field stabilization energy (CFSE) in a \(O_{h}\) field, and \(\Delta_{T}\) and \(\Delta_{T}{ }^{M}\) those in a \(T_{d}\) field.
A. 1 Calculate \(\left|\Delta O^{M}-\Delta T^{M}\right|=\Delta A\) with units of \(\Delta \circ\) for \(\mathrm{Cr}^{2+}, \mathrm{Mn}^{2+}\), and \(\mathrm{Fe}^{2+}\); assume \(\Delta_{T}=4 / 9 \Delta \mathrm{O}\).

As explained above, the d-orbitals of a six-coordinate octahedral complex split into two groups \(\mathrm{e}_{\mathrm{g}}\) \(\left(d x^{2}-y^{2}, d z^{2}\right)\) and \(t_{2 g}\left(d_{x y}, d_{y z}, d_{z x}\right)\) with energy separation of \(\Delta o\). The energies of the \(e_{g}\) and \(t_{2 g}\) orbitals relative to the barycenter are \(+0.60 \Delta\) o and \(-0.40 \Delta\) o, respectively. Likewise, the d-orbitals of a fourcoordinate tetrahedral complex split into two groups \(t_{2}\left(d_{x y}, d_{y z}, d_{z x}\right)\) and \(e\left(d x^{2}-y^{2}, d z^{2}\right)\) with energy separation of \(\Delta_{T}\). The energies of the \(t_{2}\) and e orbitals relative to the barycenter are \(+0.40 \Delta_{T}\) and \(0.60 \Delta_{\mathrm{T}}\), respectively. Therefore, in the case of high-spin electron configuration,
\(\Delta o^{M}\) and \(\Delta T^{M}\) for \(\mathrm{Cr}^{2+}\left(3 d^{4}: \mathrm{t}_{2 \mathrm{~g}}{ }^{3} \mathrm{eg}^{1}\right.\) or \(\left.\mathrm{e}^{2} \mathrm{t}_{2}{ }^{2}\right)\) are \(-0.60 \Delta \mathrm{o}\) and \(-0.40 \Delta \mathrm{~T}(=-0.18 \Delta \mathrm{o})\), respectively.
\(\Delta O^{M}\) and \(\Delta T^{M}\) for \(\mathrm{Mn}^{2+}\left(3 d^{5}: \mathrm{t}_{2}{ }^{3} \mathrm{e}_{\mathrm{g}}{ }^{2}\right.\) or \(\left.\mathrm{e}^{2} \mathrm{t}_{2}{ }^{3}\right)\) are both zero.
\(\Delta \mathrm{o}^{\mathrm{M}}\) and \(\Delta \mathrm{T}^{\mathrm{M}}\) for \(\mathrm{Fe}^{2+}\left(3 \mathrm{~d}^{6}: \mathrm{t}_{2 \mathrm{~g}}{ }^{4} \mathrm{eg}^{2}\right.\) or \(\left.\mathrm{e}^{3} \mathrm{t}_{2}{ }^{3}\right)\) are \(-0.40 \Delta \mathrm{o}\) and \(-0.60 \Delta \mathrm{~T}(=-0.27 \Delta \mathrm{o})\), respectively. According to these values, \(\left|\Delta_{\circ}{ }^{M}-\Delta_{T}{ }^{M}\right|\left(=\Delta_{A}\right)\) for each metal ions are,
\(C r^{2+}:|-0.60 \Delta \mathrm{o}-(-0.18 \Delta \mathrm{o})|=\underline{0.42 \Delta \mathrm{o}}\)
\(\mathrm{Mn}^{2+}\) : \(\underline{0}\)
\(F \mathrm{~F}^{2+}:|-0.40 \Delta \mathrm{o}-(-0.27 \Delta \mathrm{o})|=\underline{0.13 \Delta \mathrm{o}}\)

\section*{A. 2 A linear relationship can be obtained by plotting} In \(K_{\mathrm{p}}\) against \(\Delta_{\mathrm{A}} / \Delta_{\mathrm{o}}\) on the graph at right. Estimate \(K_{p}\) for \(\mathrm{Co}^{2+}\) by using this graph.


\section*{\(\mathrm{Co}^{2+}\left(3 \mathrm{~d}^{7}\right):|-0.80 \Delta \mathrm{o}-(-0.53 \Delta \mathrm{o})|=0.27 \Delta \mathrm{o}\)}
1. By using the graph and least squares method; \(y \simeq 4.45 x+0.100\)

Therefore, \(K_{p}=\exp (4.45 \times 0.27+0.100)=3.67 \simeq \underline{3.7}\)
2. By calculation; The coordinates of \(\mathrm{Mn}^{2+}\) and \(\mathrm{Cr}^{2+}\) are \((0,0.095)\) and \((0.42,1.97)\), respectively. The linear regression line calculated from these coordinates would be, \(y \simeq 4.46 x+0.100\)

Therefore, \(K_{p}=\exp (4.46 \times 0.27+0.100)=3.68 \simeq \underline{3.7}\)
3. If the participants use \(\mathrm{Fe}^{2+}(0.13,0.69)\) instead of \(\mathrm{Mn}^{2+}\), the regression line would be,
\(y \simeq 4.57 x+0.100\)


Then, \(K_{p}=\exp (4.57 \times 0.27+0.100)=3.79 \simeq \underline{3.8}\)
A. 3 Metal oxides of \(\mathrm{MO}(\mathrm{M}: \mathrm{Ca}, \mathrm{Ti}, \mathrm{V}, \mathrm{Mn}\), or Co ) crystallize in a rock-salt structure wherein the \(\mathrm{M}^{n+}\) adopts an \(\mathrm{O}_{\mathrm{n}}\) geometry with a high-spin electron configuration. The lattice enthalpy of these oxides is mainly governed by the Coulomb interactions based on the radius and charge of the ions and some contributions from the CFSE of \(\mathrm{M}^{n+}\) in the \(\mathrm{O}_{\mathrm{n}}\) field. Choose the appropriate set of lattice enthalpies \(\left[\mathrm{kJ} \mathrm{mol}^{-1}\right]\) from one of the options (a) to (f).
\begin{tabular}{|l|r|r|r|r|r|}
\hline & \multicolumn{1}{c|}{ CaO } & \multicolumn{1}{c|}{ TiO } & \multicolumn{1}{c|}{ vo } & \multicolumn{1}{c|}{ MnO } & \multicolumn{1}{c|}{ CoO } \\
\hline (a) & 3460 & 3878 & 3913 & 3810 & 3916 \\
\hline (b) & 3460 & 3916 & 3878 & 3810 & 3913 \\
\hline (c) & 3460 & 3913 & 3916 & 3810 & 3878 \\
\hline (d) & 3810 & 3878 & 3913 & 3460 & 3916 \\
\hline (e) & 3810 & 3916 & 3878 & 3460 & 3913 \\
\hline (f) & 3810 & 3913 & 3916 & 3460 & 3878 \\
\hline
\end{tabular}

One way to reach the correct answer: The lattice enthalpy is determined by the Coulomb interactions, which are proportional to the product of the valences of the constituent ions and inversely proportional to the sum of the ionic radii. As the target compounds are oxides of divalent metal ions, we should consider the ionic radii of the metal ions. The radii of divalent metal ions within the same period decrease with increasing atomic number. Let us compare the lattice enthalpies of CaO and MnO with no contribution from the CFSE: The ionic radius of \(\mathrm{Mn}^{2+}\) is smaller than that of \(\mathrm{Ca}^{2+}\), and therefore, the lattice enthalpy is higher for MnO . So the participants should choose (a), (b), or (c). Then, let us compare the lattice enthalpies of TiO ( \(\mathrm{d}^{2}\) ) and \(\mathrm{VO}\left(\mathrm{d}^{3}\right)\) : The ionic radius of \(\mathrm{V}^{2+}\) is smaller than that of \(\mathrm{Ti}^{2+}\), and the CFSE is higher for VO than for TiO. Accordingly, the lattice enthalpy is also higher for VO. Based on these observations, the answer should be (a) or (c). Finally, let us compare the lattice enthalpies of \(\mathrm{TiO}\left(\mathrm{d}^{2}\right)\) and \(\mathrm{CoO}\left(\mathrm{d}^{7}\right)\) : The ionic radius of \(\mathrm{Co}^{2+}\) is smaller than that of \(\mathrm{Ti}^{2+}\), while their CFSEs are comparable. Thus, the lattice enthalpy is higher for CoO. Thus, the correct answer is (a).

In Part A, we wish to introduce the structural diversity of d-metal complexes. We also show that the states of d-metal ions in crystals can be understood using the crystal field theory usually applied to d-metal complexes, which are molecules.

\section*{Part B}

A mixed oxide \(A\), which contains \(\mathrm{La}^{3+}\) and \(\mathrm{Cu}^{2+}\), crystallizes in a tetragonal unit cell shown in Fig.1. In the [ \(\mathrm{CuO}_{6}\) ] octahedron, the \(\mathrm{Cu}-\mathrm{O}\) length along the \(z\)-axis \(\left(I_{z}\right)\) is longer than that of the \(x\)-axis \(\left(I_{x}\right)\), and \(\left[\mathrm{CuO}_{6}\right]\) is distorted from the regular \(O_{h}\) geometry. This distortion removes the degeneracy of the \(e_{g}\) orbitals ( \(\mathrm{d} x^{2}-y^{2}\) and \(\mathrm{d} z^{2}\) ).

A can be synthesized by thermal decomposition (pyrolysis) of complex B, which is formed by mixing metal chlorides in dilute aqueous ammonia solution containing squaric acid \(\left(\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{4}\right)\), i.e., a diacid. The pyrolysis behavior of B in dry air shows a weight loss of \(29.1 \%\) up to \(200^{\circ} \mathrm{C}\) due to loss of crystallization water, followed by another weight loss up to \(700^{\circ} \mathrm{C}\) due to the release of


Fig. 1 \(\mathrm{CO}_{2}\). The total weight loss prior to the formation of \(\mathbf{A}\) is \(63.6 \%\). It should be noted that only water and \(\mathrm{CO}_{2}\) are released in the pyrolysis reaction.
B. 1 Write the chemical formulae of \(\mathbf{A}\) and \(\mathbf{B}\).

The unit cell shown in Fig. 1 contains four \(\mathrm{La}^{3+}\), two \(\mathrm{Cu}^{2+}\), and eight \(\mathrm{O}^{2-}\) ions. Therefore, \(\underline{\mathbf{A}}\) \(\underline{\mathrm{La}_{2} \mathrm{CuO}_{4}}\). As the formula weight of \(\mathrm{La}_{2} \mathrm{CuO}_{4}\) is 405.3 , that of \(\mathbf{B}\) should be 1113.5 considering the following equation: \(405.3 \div(1-0.636)\). Given that the weight loss due to crystallization water is \(29.1 \%\), the number of molecules of crystallization water is 18.00 considering the following equation: \((1113.5 \times 0.291) \div 18\left(18 \mathrm{H}_{2} \mathrm{O} ; \mathrm{M}=324\right)\). Complex B is a trinuclear complex that consists of two \(\mathrm{La}^{3+}\) and \(\mathrm{Cu}^{2+}\) ion. Considering that the synthetic solution is basic, the squaric acid is deprotonated and coordinates to the metal ion as \(\mathrm{C}_{4} \mathrm{O}_{4}{ }^{2-}\). The number of squaric acid molecules is 4.00 based on the following equation: \((1113.5-138.9 \times 2-63.5-324) \div 112\left(\mathrm{C}_{4} \mathrm{O}_{4}{ }^{2-} ; \mathrm{M}=112\right)\). B : \(\mathrm{La}_{2} \mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{O}_{4}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{18}\left(\mathrm{La}_{2} \mathrm{CuC}_{16} \mathrm{O}_{34} \mathrm{H}_{36}\right)\)

\section*{B. 2 Calculate \(I_{x}\) and \(I_{z}\) using Fig. 1.}
```

Ix: 0.3833\div2 = 0.1917\approx0.192 nm
Iz:}(1.3313-0.2520\times2)\div4=0.2068\approx\underline{0.207 nm

```
B. 3 For \(\mathrm{Cu}^{2+}\) in the distorted \(\left[\mathrm{CuO}_{6}\right]\) octahedron in \(\mathbf{A}\) of Fig. 1, \(\underline{\text { write }}\) the names of the split \(\mathrm{e}_{9}\) orbitals ( \(\mathrm{d} x^{2}-y^{2}\) and \(\mathrm{d} z^{2}\) ) in (i) and (ii), and draw the electron configuration in the dotted box in your answer sheet.

B. \(4 \mathbf{A}\) is an insulator. When one \(\mathrm{La}^{3+}\) is substituted with one \(\mathrm{Sr}^{2+}\), one hole is generated in the crystal lattice that can conduct electricity. As a result, the \(\mathrm{Sr}^{2+}\)-doped \(\mathbf{A}\) shows superconductivity below 38 K . When a substitution reaction took place for \(\mathbf{A}, 2.05 \times 10^{27}\) holes \(\mathrm{m}^{-3}\) were generated. Calculate the percentage of \(\mathrm{Sr}^{2+}\) substituted for \(\mathrm{La}^{3+}\) based on the mole ratio in the substitution reaction. Note that the valences of the constituent ions and the crystal structure are not altered by the substitution reaction.

The corresponding reaction equation, where the amount of Sr is \(x \%\), is:
\(\mathrm{La}_{2} \mathrm{CuO}_{4}+(2 x / 100) \mathrm{Sr}^{2+} \rightarrow\left[\mathrm{La}_{\{2 \times(1-x / 100)\}} \mathrm{Sr}_{(2 \times 100)} \mathrm{CuO}_{4}\right]^{[2 \times / 100)-}+(2 x / 100) \mathrm{La}^{3+}\)
The charge of \(\left[\mathrm{La}_{\{2 \times(1-x / 100)\}} \mathrm{Sr}_{(2 \times 1100)} \mathrm{CuO}_{4}\right]\) is negative, and the amount of doped holes is \((2 \times / 100)\) \(h^{+}\). The volume of the unit cell is \(0.3833^{2} \times 1.3313=0.1956 \mathrm{~nm}^{3}\). The unit cell contains four \(\mathrm{La}^{3+}\), two \(\mathrm{Cu}^{2+}\), and eight \(\mathrm{O}^{2-}\) ions, i.e., the unit contains two \(\mathrm{La}_{2} \mathrm{CuO}_{4}\). Accordingly, the number of holes per unit cell is \((4 x / 100)\).

Since the concentration of holes is the number of holes divided by the unit cell volume, the following equation is satisfied: \((4 x / 100) /\left(0.1956 \times 10^{-27}\right)=2.05 \times 10^{27} . \underline{x=10 \%}\)

In Part B, we wish to introduce the structures, related reactions, and functions of mixed transitionmetal oxides with \(\mathrm{La}_{2} \mathrm{CuO}_{4}\) as an example. We also present the structural diversity based on JahnTeller distortion of \(\mathrm{Cu}^{2+}\) ( \(\mathrm{d}^{9}\) configuration), and the functions related with elemental substitution.

\section*{Part C}
\(\left[\mathrm{Cu}_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{4}\right]\) is composed of four \(\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\)coordinated to two \(\mathrm{Cu}^{2+}\) (Fig. 2A). \(\left[\mathrm{Cu}_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{4}\right]\) exhibits high levels of structural symmetry, with two axes passing through the carbon atoms of the four \(\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\)and an axis passing through the two \(\mathrm{Cu}^{2+}\), all of which are oriented orthogonal relative to each other. When a dicarboxylate ligand is used instead of \(\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\), a "cage complex" is formed. The cage complex \(\left[\mathrm{Cu}_{4}(\mathrm{~L} 1)_{4}\right]\) is composed of planar dicarboxylate \(\mathbf{L 1}\) (Fig. 2B) and \(\mathrm{Cu}^{2+}\) (Fig. 2C). The angle \(\theta\) between the coordination directions of the two carboxylates, indicated by the arrows in Fig. 2B, determines the structure of the cage complex. The \(\theta\) is \(0^{\circ}\) for L1. Note that hydrogen atoms are not shown in Fig. 2.

B



Fig. 2
C. 1 The \(\theta\) of the planar dicarboxylate L2 below is fixed to \(90^{\circ}\). If the composition of the cage complex formed from L 2 and \(\mathrm{Cu}^{2+}\) is [ \(\left.\mathrm{Cu}_{n}(\mathrm{~L} 2)_{m}\right]\), give the smallest integer combination of \(n\) and \(m\). Assume that only the \(\mathrm{CO}_{2}^{-}\)groups of \(\mathbf{L 2}\) form a coordination bond to \(\mathrm{Cu}^{2+}\) ions.

\(n=m=12\)


A zinc complex, \(\left[\mathrm{Zn}_{4} \mathrm{O}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{6}\right]\), contains four tetrahedral \(\mathrm{Zn}^{2+}\), six \(\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\), and one \(\mathrm{O}_{2}^{-}\)(Fig. \(3 A)\). In \(\left[\mathrm{Zn}_{4} \mathrm{O}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{6}\right]\), the \(\mathrm{O}^{2-}\) is located at the origin, and the three axes passing through the carbon atoms of \(\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}\)are oriented orthogonal relative to each other. When pbenzenedicarboxylate (Fig. 3B, L3, \(\theta=180^{\circ}\) ) is used instead of \(\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}\), the \(\mathrm{Zn}^{2+}\) clusters are linked to each other to form a crystalline solid \((\mathbf{X})\) that is called a "porous coordination polymer" (Fig. 3C). The composition of \(\mathbf{X}\) is \(\left[\mathrm{Zn} \mathrm{n}_{4} \mathrm{O}(\mathrm{L} 3)_{3}\right]_{n}\), and it has a cubic crystal structure with nano-sized pores. One pore is represented as a sphere in Fig. 3D, and each tetrahedral \(\mathrm{Zn}^{2+}\) cluster is represented as a dark gray polyhedron in Fig. 3C and 3D. Note that hydrogen atoms are not shown in Fig. 3.


Fig. 3
C. 2 X has a cubic unit cell with a side length of \(a\) (Fig. 3C) and a density of \(0.592 \mathrm{~g} \mathrm{~cm}^{-3}\). Calculate \(a\) in [cm].

The molecular weight of \(\mathrm{Zn}_{4} \mathrm{O}(\mathrm{L} 3)_{3}\) is 770 .
According to Fig. 3C, there are eight \(\mathrm{Zn}_{4} \mathrm{O}(\mathrm{L} 3)_{3}\) units in the unit cell. Therefore, the molecular weight per unit cell can be calculated as \(770 \times 8=6160\).

The weight of the unit cell is \(6160 \div N_{\mathrm{A}}=1.02 \times 10^{-20} \mathrm{~g}\)
Let the length of the side of the unit cell be \(a[\mathrm{~cm}]\), then,
\(\left(1.02 \times 10^{-20}\right) \mathrm{g} / a^{3}\left[\mathrm{~cm}^{3}\right]=0.592 \mathrm{~g} \mathrm{~cm}^{-3}\).
\(a=2.6 \times 10^{-7} \mathrm{~cm}\)
C. \(3 \mathbf{X}\) contains a considerable number of pores, and 1 g of \(\mathbf{X}\) can accommodate \(3.0 \times 10^{2} \mathrm{~mL}\) of \(\mathrm{CO}_{2}\) gas in the pores at 1 bar and \(25^{\circ} \mathrm{C}\). Calculate the average number of \(\mathrm{CO}_{2}\) molecules per pore.
There is one pore per \(\mathrm{Zn}_{4} \mathrm{O}(\mathrm{L} 3)_{3}\) unit.
Number of pores [mol] per 1 [g] of \(\mathbf{X}: 1\) [g] / \(770=0.00130\).
Based on the ideal gas equation, \(3.0 \times 10^{2}[\mathrm{~mL}]\) of adsorbed \(\mathrm{CO}_{2}\) corresponds to:
\(\left(1 \times 10^{5}[\mathrm{~Pa}] \times 3.0 \times 10^{-4}\left[\mathrm{~m}^{3}\right]\right) /(8.31 \times 298[\mathrm{~K}])=0.0121[\mathrm{~mol}]\) of \(\mathrm{CO}_{2}\).
Therefore, \(0.0121 \div 0.00130=\underline{9.3}\) molecules of \(\mathrm{CO}_{2}\) per pore.

The following question C. 4 is not included in the official IChO Problems 2021 because of the IChO exam length regulation.

Let's try to describe the structure of the complex geometrically here, as shown in Fig. 4. As shown in Figs. 4a and 4b, \(\left[\mathrm{Cu}_{2}\left(\mathrm{CO}_{2}\right)_{4}\right]\) is represented by a square panel with four carbons connected. The structure of \(\left[\mathrm{Cu}_{2}\left(\mathrm{CO}_{2}\right)_{4}\right]\) is then described by connecting the square panels using straight lines connecting the carbons of the two \(\mathrm{CO}_{2}{ }^{-}\)groups of the dicarboxylate (Fig. 4C).

A


B



Fig. 4
C. 4 Following the notation in Fig. 4, the structures of the various coordination polymers consisting of \(\left[\mathrm{Cu}_{2}\left(\mathrm{CO}_{2}\right)_{4}\right]\) can be represented by connecting the vertices of the square panels with straight lines. For the structures of the four coordination polymers described in this way (Fig. 5 , right), select the most suitable dicarboxylate (Fig. 5, left) to form each of them, and connect the lines to be \(1: 1\). Note that only the \(\mathrm{CO}_{2}^{-}\)group is assumed to coordinate with the \(\mathrm{Cu}^{2+}\) ion, and all dicarboxylates are represented by a straight line connecting the carbons of the two \(\mathrm{CO}_{2}{ }^{-}\)group. The dotted line on the right side of Fig. 5 indicates that the same structure continues.


Fig. 5

In Part C, we would like the examinee to imagine and understand to construct more diverse structures of coordination complexes architectures by changing the organic ligands.

\section*{Question 7 : Playing with Non-benzenoid Aromaticity}

Professor Nozoe (1902-1996) opened the research field of non-benzenoid aromatic compounds, which are now ubiquitous in organic chemistry.


Photo courtesy: Department of Chemistry, Graduate School of Science, Tohoku University.

\section*{Part A}

Lineariifolianone is a natural product with a unique structure, which was isolated from Inula linariifolia. From valencene (1), a one-step conversion yields 2, before a three-step conversion via 3 yields ketone 4. Eremophilene (5) is converted into 6 by performing the same four-step conversion.


Inula linariifolia

\footnotetext{
Further reading:
Erik J. Sorensen, et al., "Synthesis of (+)-Lineariifolianone and Related CyclopropenoneContaining Sesquiterpenoids" The Journal of Organic Chemistry 2019, Vol. 84, Iss. 9, 5524-5534.
}




A. 1 Draw the structure of 2 and 6 and clearly identify the stereochemistry where necessary.
2

Then, ketone 4 is converted into ester 15. Compound 8 (molecular weight: 188) retains all the stereocenters in 7 . Compounds 9 and 10 have five stereocenters and no carbon-carbon double bonds. Assume that \(\mathrm{H}_{2}{ }^{18} \mathrm{O}\) is used instead of \(\mathrm{H}_{2}{ }^{16} \mathrm{O}\) for the synthesis of \({ }^{18} \mathrm{O}\)-labelled lineariifolianones 13 and 14 from 11 and 12, respectively. Compounds 13 and 14 are \({ }^{18} \mathrm{O}\)-labelled isotopomers. Ignoring isotopic labelling, both 13 and 14 provide the same product 15 with identical stereochemistry.


\(\qquad\)

A. 2 Choose the appropriate structure for \(\mathbf{A}\).

II \(\mathrm{F}_{3} \mathrm{C}-\mathrm{S}_{\mathrm{O}}^{\mathrm{O}} \mathrm{O}\)
III

Iv \(\underset{\mathrm{O}^{\prime \prime}}{\mathrm{HNO}_{\mathrm{O}}^{\prime}}\)

A. 3 Draw the structures of 8-14 and clearly identify the stereochemistry where necessary. Also, indicate the introduced \({ }^{18} \mathrm{O}\) atoms for 13 and 14 as shown in the example on the right.


8



\section*{Part B}

Compound 19 is synthesized as shown below. In relation to non-benzenoid aromaticity, 19 can be used as an activator for alcohols, and 20 was converted to 22 via ion-pair intermediate 21. Although the formation of \(\mathbf{2 1}\) was observed by NMR, \(\mathbf{2 1}\) gradually decomposes to give 18 and 22.



\({ }^{1} \mathrm{H}\) NMR ( \(\left.\mathrm{CD}_{3} \mathrm{CN}, \mathrm{ppm}\right) \quad\) 20: \(\delta 7.4-7.2(5 \mathrm{H}), 3.7(2 \mathrm{H}), 2.8(2 \mathrm{H}), 2.2(1 \mathrm{H})\)
21: \(\delta 8.5-7.3\) (15H), 5.5 (2H), 3.4 (2H)
B. 1 Draw the structures of 17-19 and 21. Identifying the stereochemistry is not necessary.
(19

Further reading:
Tristan H. Lambert, et al., "Aromatic Cation Activation of Alcohols: Conversion to Alkyl Chlorides Using Dichlorodiphenylcyclopropene" Journal of the American Chemical Society 2009, Vol. 131, Iss. 39, 13930-13931.

\section*{Question 8: Dynamic Organic Molecules and Their Chirality}

\section*{Part A}

Polycyclic aromatic hydrocarbons with successive ortho-connections are called [n]carbohelicenes (here, \(n\) represents the number of six-membered rings). [4]Carbohelicene is efficiently prepared by a route using a photoreaction as shown below, via an intermediate that is readily oxidized by iodine.


The photoreaction proceeds in a manner similar to the following example.

A. 1 Draw the structures of \(\mathbf{A}-\mathbf{C}\). Stereoisomers should be distinguished.
\begin{tabular}{|c|c|c|c|}
\hline A & B & C &  \\
\hline
\end{tabular}
A. 2 Attempts to synthesize [5]carbohelicene in the same way resulted in the formation of only a trace amount of [5]carbohelicene, instead affording an unexpected product \(\mathbf{D}\) whose molecular weight was 2 Da lower than that of [5]carbohelicene. The \({ }^{1} \mathrm{H}\) NMR chemical shifts of \(\mathbf{D}\) are listed below. Draw the structure of \(\mathbf{D}\).

D ( \(\delta\), ppm in \(\left.\mathrm{CS}_{2}, 20^{\circ} \mathrm{C}\right): 8.85(2 \mathrm{H}), 8.23(2 \mathrm{H}), 8.07(2 \mathrm{H}), 8.01(2 \mathrm{H}), 7.97(2 \mathrm{H}), 7.91(2 \mathrm{H})\)



The following questions A. 3 and A. 4 are not included in the official IChO Problems 2021 because of potential difficulty in marking by following the IChO marking regulation.
[6]Carbohelicene, which is prepared by the same photoreaction, can be enantiomerically separated on a chiral column, a process developed by Prof. Yoshio Okamoto. Here, the chirality of [ \(n\) ]carbohelicenes are defined as \((M)\) or \((P)\) as shown below.

A. 3 Enantiomerically pure [6]carbohelicene gradually racemizes upon heating with an helical inversion rate constant \(k_{\text {i }}\). The activation barrier in this case can be determined by plotting the enantiomeric excess as a function of time as shown in the figure below. Calculate the racemization rate constant, \(k_{r}\), and the activation barrier, \(E_{\mathrm{a}}\), using the enantiomeric excess at 60 min . Consider the relationship \(k_{\mathrm{r}}=2 k_{\mathrm{i}}\). The rate of the racemization process is independent of the concentration.


First, \(k_{r}\) is calculated according to Figure 1. Given that the racemization is a unimolecular firstorder reaction,
\(\ln (\mathrm{ee})=-k_{\mathrm{r}} \mathrm{t}+\mathrm{y}\)
, wherein y is a constant. By recalling \(\mathrm{k}_{\mathrm{r}}=2 \mathrm{k}_{\mathrm{i}}\) and using the ee values at \(\mathrm{t}=0 \mathrm{~s}\) and 3600 s , at \(\mathrm{T}=460 \mathrm{~K}\) and \(478 \mathrm{~K}, k_{i}\) are calculated to be \(2.927 \times 10^{-5} \mathrm{~s}^{-1}\) and \(1.273 \times 10^{-4} \mathrm{~s}^{-1}\), respectively.

Second, according to the Arrhenius equation, \(\ln k_{i}=-E_{a} /(R T)+\ln A\), a plot of \(\ln k_{i}\) versus 1/T gives a straight line shown on the right, whose gradient can be used to determine \(-E_{a} / R\) as -17954 .

Given \(\mathrm{R}=8.31 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}, \mathrm{E}_{\mathrm{a}}\) is calculated to be \(149.27 \mathrm{~kJ} \mathrm{~mol}^{-1}=\underline{1.5 \times 10^{2} \mathrm{~kJ} \mathrm{~mol}^{-1}}\)

A. 4 The racemization kinetics of [5]carbohelicene was estimated to be \(E_{a}=98.5 \mathrm{~kJ} \mathrm{~mol}^{-1}\) with a frequency factor in the Arrhenius equation (preexponential factor) of \(\mathrm{A}=2.43 \times 10^{12} \mathrm{~s}^{-1}\). Based on these parameters, estimate the half life of the enantiomeric excess (i.e., the time at which \(50 \%\) ee is observed) of [5]carbohelicene at 300 K .
```

ki is calculated to be 1.748 \times 10-5 s-1 by using the Arrhenius equation In ki= - Ea/(RT)+ In A with Ea
= 98.5 kJ mol}\mp@subsup{}{}{-1},\textrm{A}=2.43\times1\mp@subsup{0}{}{12}\mp@subsup{\textrm{s}}{}{-1},\textrm{R}=8.31\textrm{J}\cdot\mp@subsup{\textrm{K}}{}{-1}\cdot\mp@subsup{\textrm{mol}}{}{-1}\mathrm{ , and T = 300 K.
kr}=2\mp@subsup{k}{\textrm{i}}{}=3.496\times1\mp@subsup{0}{}{-5}\mp@subsup{\textrm{s}}{}{-1}=2.098\times1\mp@subsup{0}{}{-3}\mp@subsup{\textrm{min}}{}{-1
With In (ee) = -krt + y, the half life = - (ln 0.5)/kr = 330 min

```

A message from A. 3 and A. 4 is that the dynamic behavior of [n]carbohelicenes can be quantitatively analyzed. The racemization activation energy is reasonably higher for [6]carbohelicene than that for [5]carbohelicene. Because the chiral separation experiment is routinely conducted around room temperature, [6]carbohelicene can be fully separated while [5]carbohelicene cannot due to the rate of racemization.

The following question A. 5 was modified and is different from the corresponding question in the official IChO Problems 2021 because of potential difficulty in marking by following the IChO marking regulation.

Multiple helicenes are molecules that contain two or more helicene-like structures. If its planar chirality is considered, several stereoisomers exist in a multiple helicene. For example, compound \(\mathrm{E}\left(\mathrm{C}_{46} \mathrm{H}_{26}\right)\) contains three [5]carbohelicene-like moieties in one molecule. One of the stereoisomers is described as \((P, P, P)\) as shown below.


E

A. 5 The nickel-mediated trimerization of 1,2-dibromobenzene generates triphenylene. When the same reaction is applied to a racemic mixture of \(\mathbf{F}\), multiple helicene \(\mathbf{G}\left(\mathrm{C}_{66} \mathrm{H}_{36}\right)\) is obtained. Draw all the possible stereoisomers of \(\mathbf{G}\). As a reference, one isomer should be drawn completely with the chirality defined as in the example above; The other isomers should be listed using \(M\) and \(P\). For instance, the other stereoisomers of \(\mathbf{E}\) can be listed as \((1,2,3)=\) \((P, M, P),(P, M, M),(P, P, M),(M, M, M),(M, M, P),(M, P, P)\), and (M, P, M).

3







F

(1), (2), (3), (4), (5), (6)

\((P, P, P, P, P, P)\)

First, consider all the possible isomers with respect to (1)~(3).
( \(P, P, P\) )
\(\begin{cases}(P, P, P, P, P, P) & 1 \\ (P, P, P, M, P, P) & 2 \\ (P, P, P, M, M, P) & 3 \\ (P, P, P, M, M, M) & 4\end{cases}\)
isomers with respect to (4)~(6).
You then can list up all the possible cases.

Carefully check the same compounds.
ent- means the enantiomer of each compound.
(M, P, P)
Finally, you find 10 diastereomers and 20 stereoisomers including enantiomers.
\(\begin{cases}(M, P, P, P, P, P) & 5 \\ (M, P, P, M, P, P) & 6 \\ (M, P, P, P, M, P) & 6 \\ (M, P, P, P, P, M) & 7 \\ (M, P, P, M, M, P) & 8 \\ (M, P, P, P, M, M) & 9 \\ (M, P, P, M, P, M) & 9 \\ (M, P, P, M, M, M) & 10\end{cases}\)
( \(M, M, P\) )
\(\begin{cases}(M, M, P, P, P, P) & \text { ent-10 } \\ (M, M, P, M, P, P) & \text { ent-9 } \\ (M, M, P, P, M, P) & \text { ent-8 } \\ (M, M, P, P, P, M) & \text { ent-9 } \\ (M, M, P, M, M, P) & \text { ent-6 } \\ (M, M, P, P, M, M) & \text { ent-6 } \\ (M, M, P, M, P, M) & \text { ent-7 } \\ (M, M, P, M, M, M) & \text { ent-5 }\end{cases}\)
( \(M, M, M\) )
\(\begin{cases}(M, M, M, P, P, P) & \text { ent-4 } \\ (M, M, M, M, P, P) & \text { ent-3 } \\ (M, M, M, M, M) & \text { ent-2 } \\ (M, M, M, M, M, M) & \text { ent-1 }\end{cases}\)

\section*{Part B}

Sumanene is a hydrocarbon that was first reported in Japan in 2003. It was named after Suman that means sunflower in both Hindi and Sanskrit and has a bowl-shaped structure as shown below.


The synthesis of sumanene was achieved by a reaction sequence that consists of a ring-opening and a ring-closing metathesis. Representative metathesis reactions catalyzed by a ruthenium catalyst are shown below.

Ring-opening metathesis


Ring-closing metathesis
\[
\mathrm{M}=\mathrm{RuCl}_{2}\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right]_{2}
\]


Synthesis of sumanene



B. 1 Draw the structure of intermediate I (its stereochemistry is not required).


I
B. 2 Starting from the optically active precursor \(\mathbf{J}\), the same reaction sequence gives the optically active sumanene derivative \(\mathbf{K}\) with retention of the stereochemistry. Draw the structure of \(\mathbf{K}\) with the appropriate stereochemistry.



\footnotetext{
Further reading:
Hidehiro Sakurai, Taro, Daiko, Toshikazu Hirao, "A Synthesis of Sumanene, a Fullerene Fragment" Science 2003, Vol. 301, Iss. 5641, 1878.
}

\section*{Question 9: Likes and Dislikes of Capsule}

\section*{Part A}

Good kids don't do that, but if you unseam a tennis ball, you can disassemble it into two U-shaped pieces.


Based on this idea, compounds 1 and 2 were synthesized as U-shaped molecules with different sizes. Compound 3 was prepared as a comparison of 1 and the encapsulation behavior of these compounds was investigated.


3

The synthetic route to \(\mathbf{2}\) is shown below. The elemental analysis of compound \(\mathbf{9}\) revealed: C : \(40.49 \%, \mathrm{H}: 1.70 \%\), and \(\mathrm{O}: 17.98 \%\) by mass.



A. 1 Draw the structures of 4-9; the stereochemistry can be neglected. Use "PMB" as a substituent instead of drawing the whole structure of \(p\)-methoxybenzyl group shown in the scheme above.
\begin{tabular}{|c|c|c|c|}
\hline 4 & \(\left.\right|_{\mathrm{CO}_{2} \mathrm{PMB}} ^{\mathrm{CO}_{2} \mathrm{PMB}}\) & 5 &  \\
\hline 6 &  & 7 &  \\
\hline 8 &  & 9 &  \\
\hline
\end{tabular}

In the mass spectrum of \(\mathbf{1}\), the ion peak corresponding to its dimer ( \(\mathbf{1}_{2}\) ) was clearly observed, whereas an ion peak for \(\mathbf{3}_{2}\) was not observed in the spectrum of \(\mathbf{3}\). In the \({ }^{1} \mathrm{H}\) NMR spectra of a solution of \(\mathbf{1}\), all the NH protons derived from 1 were observed to be chemically equivalent, and their chemical shift was significantly different from that of the NH protons of 3 . These data indicate that hydrogen bonds are formed between the NH moieties of \(\mathbf{1}\) and atoms \(\mathbf{X}\) of another molecule of \(\mathbf{1}\) to form the dimeric capsule.
A. 2 Circle all the appropriate atom(s) \(X\) in 1.

A. 3 Give the number of the hydrogen bonds in the dimeric capsule (12).

\section*{8}

The eight NH protons in \(1_{2}\) are observed equally, thus the number of hydrogen bonds in \(1_{2}\) are obviously 8.

The following questions A. 4 and A. 5 are not included in the official IChO Problems 2021 because of the IChO exam length regulation.

The dimeric capsule of compound 1 has an internal space and can encapsulate the appropriate small molecules. The \({ }^{1} \mathrm{H}\) NMR spectrum of methane and compound \(1\left(2.00 \times 10^{-2} \mathrm{mmol}\right)\) in \(\mathrm{C}_{6} \mathrm{D}_{6}\) \((1.00 \mathrm{~mL})\) was measured. The assignment of characteristic signals and chemical shifts and integral values are shown below. Here, methane inside and outside the capsule was observed separately in the \({ }^{1} \mathrm{H}\) NMR analysis.
\begin{tabular}{|l|l|l|}
\hline Attribution of protons & Chemical shifts (ppm) & integrals \\
\hline (a) NH protons of the methane-encapsulated capsule & 9.25 & 2.50 \\
\hline (b) NH protons of the empty capsule & 9.20 & 1.76 \\
\hline (c) Protons of methane outside the capsule & 0.23 & 3.20 \\
\hline (d) Protons of methane inside the capsule & -0.91 & 1.25 \\
\hline
\end{tabular}

Under the above conditions, all compounds 1 form the dimeric capsule, and the volume of the solution does not change by adding 1 and methane.
A. 4 Determine the concentrations of the methane inclusion capsule and the empty capsule, respectively.

The concentration of compound 1 is \(2.00 \times 10^{-2} \mathrm{mmol} / 1.00 \mathrm{~mL}\), therefore, the sum of concentration of the empty and inclusion capsules is \(1.00 \times 10^{-2} \mathrm{mmol} / 1.00 \mathrm{~mL}\). In the NMR analysis, the integration ratio of the empty capsule to the inclusion capsule is 1.76 to 2.50. Thus,
[inclusion capsule] \(=1.00 \times 10^{-2} \times(2.50 /(1.76+2.50))=0.587 \times 10^{-2} \mathrm{~mol} / \mathrm{L}\) [empty capsule] \(=1.00 \times 10^{-2} \times(1.76 /(1.76+2.50))=0.413 \times 10^{-2} \mathrm{~mol} / \mathrm{L}\)
A. 5 Determine the association constant ( \(K_{\mathrm{a}}\) ) for methane and the dimeric capsule. Note that the association constant \(\left(K_{a}\right)\) for incorporated molecule \(Z\) and capsule \(1_{2}\) is given by equations 1 and 2 .
\[
\begin{align*}
& Z+1_{2} \rightarrow Z @ 1_{2}  \tag{1}\\
& K_{a}=\frac{\left[Z @ 1_{2}\right]}{[Z]\left[1_{2}\right]} \tag{2}
\end{align*}
\]

In the NMR spectrum, the integral ratio of \(\mathrm{NH}(8 \mathrm{H})\) and internal methane (equivalent to 4 H ) is \(2.5: 1.25\), indicating that methane incorporated into the capsule is a single molecule, i.e., a \(1: 1\) complex is formed. Therefore, the concentration of the inclusion capsule and the concentration of methane inside the capsule are equal ( \(0.587 \times 10^{-2} \mathrm{~mol} / \mathrm{L}\) ), and the concentration of methane outside the capsule is \((3.20 / 1.25) \times 0.587 \times 10^{-2} \mathrm{~mol} / \mathrm{L}=1.50 \mathrm{x}\) \(10^{-2} \mathrm{~mol} / \mathrm{L}\) from the corresponding integral ratio.
Therefore, the association constant \(K_{a}\) is calculated as follows:
\(K_{a}=\left[0.587 \times 10^{-2}\right] /\left(\left[0.413 \times 10^{-2}\right] \times\left[1.50 \times 10^{-2}\right]\right)=94.8 \mathrm{M}^{-1}\)

Compound 2 also forms a rigid and larger dimeric capsule ( \(\mathbf{2}_{2}\) ). The \({ }^{1} \mathrm{H}\) NMR spectrum of \(\mathbf{2}_{2}\) was measured in \(\mathrm{C}_{6} \mathrm{D}_{6}, \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{~F}\), and a \(\mathrm{C}_{6} \mathrm{D}_{6} / \mathrm{C}_{6} \mathrm{D}_{5} \mathrm{~F}\) solvent mixture, with all other conditions being kept constant. The chemical shifts for the \(\mathrm{H}^{\mathrm{a}}\) proton of 2 in the above solvents are summarized below. Assume that the interior of the capsule is always filled with the largest possible number of solvent molecules and that each signal corresponds to one species.

\begin{tabular}{|l|l|l|}
\hline solvent & Chemical shifts (ppm) & integrals \\
\hline (a) \(\mathrm{C}_{6} \mathrm{D}_{6}\) & 4.60 & 2.10 \\
\hline (b) \(\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{~F}\) & 4.71 & 5.21 \\
\hline (c) mixed solvents of \(\mathrm{C}_{6} \mathrm{D}_{6}\) and \(\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{~F}\) & \(4.60,4.71,4.82\) & 2.48 \\
\hline
\end{tabular}
A. 6 Determine the number of \(\mathrm{C}_{6} \mathrm{D}_{6}\) and \(\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{~F}\) molecules encapsulated in \(\mathbf{2}_{2}\) giving each \(\mathrm{H}^{\mathrm{a}}\) signal.
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{H}^{\text {a }}\) & \(\mathrm{C}_{6} \mathrm{D}_{6}\) & \(\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{~F}\) \\
\hline 4.60 & ( 2 ) molecule(s) & ( 0 ) molecule(s) \\
\hline 4.71 & ( 0 ) molecule(s) & ( 2 ) molecule(s) \\
\hline 4.82 & ( 1 ) molecule(s) & ( 1 ) molecule(s) \\
\hline
\end{tabular}

The observation of the third signal in the mixed solvent indicates that two solvent molecules are initially encapsulated in the capsule. Thus, the signal at 4.82 ppm is ascribed to a capsule containing one molecule of \(\mathrm{C}_{6} \mathrm{D}_{6}\) and one molecule of \(\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{~F}\).
\({ }^{1} \mathrm{H}\) NMR measurements in \(\mathrm{C}_{6} \mathrm{D}_{6}\) revealed that \(2_{2}\) can incorporate one molecule of 1 adamantanecarboxylic acid (AdA), and the association constants ( \(K_{\mathrm{a}}\) ) which are expressed below were determined for various temperatures.
\[
\begin{equation*}
K_{\mathrm{a}}=\frac{\left[\mathrm{Z} @ \mathbf{2}_{2}\right]}{[\mathrm{Z}]\left[\text { solvent } @ \mathbf{2}_{2}\right]} \tag{3}
\end{equation*}
\]

Similarly, the \(K_{a}\) values of \(\mathrm{CH}_{4}\) and \(\mathbf{1}_{2}\) given as eq (2) at various temperatures in \(\mathrm{C}_{6} \mathrm{D}_{6}\) were also determined by \({ }^{1} \mathrm{H}\) NMR measurements. The plots of the two association constants (as \(\ln K_{a}\) vs \(1 / T\) ) are shown below.


A. 7 Choose the correct options in gaps ( 1 )-( 5 ) in the following paragraph from A and B.

No \(\mathrm{C}_{6} \mathrm{D}_{6}\) molecule is encapsulated in \(\mathbf{1}_{2}\). In line II, the entropy change \((\Delta S)\) is (1) and enthalpy change \((\Delta H)\) is ( 2 ), indicating that the driving force for the encapsulation in line II is (3). Therefore, line I corresponds to ( 4 ), and line II corresponds to ( 5 ).
\begin{tabular}{|l|l|l|}
\hline & A & B \\
\hline\((1)\) & positive & negative \\
\hline\((2)\) & positive & negative \\
\hline\((3)\) & \(\Delta S\) & \(\Delta H\) \\
\hline\((4)\) & \(\mathbf{1}_{2}\) and \(\mathrm{CH}_{4}\) & \(\mathbf{2}_{2}\) and AdA \\
\hline\((5)\) & \(\mathbf{1}_{2}\) and \(\mathrm{CH}_{4}\) & \(\mathbf{2}_{2}\) and AdA \\
\hline
\end{tabular}
( 1 ): A
( 2 ): A
( 3 ): A
( 4 ): A
( 5 ): B

> Transforming \(\Delta G=-R T \mathrm{n} K_{a}=\Delta H-T \Delta S\) gives \(\ln K_{a}=-\Delta H / R \times(1 / T)+\Delta S / R\)
> (If \(\Delta H\) is negative, the slope is positive; if the y-intercept is negative, \(\Delta S\) is negative.)
> The relationship between \(1_{2}\) and \(\mathrm{CH}_{4}\) is that the entropy change is unfavorable \((\Delta S<0)\) given that the two components become one component. Nevertheless, the encapsulation of \(\mathrm{CH}_{4}\) occurs \((\Delta G<0)\), indicating that the enthalpy change is exothermic and favorable \((\Delta H<0)\). This result indicates a plot with a positive slope and a negative y-intercept for \(1_{2}\) and \(\mathrm{CH}_{4}\). Therefore, the plot with a negative slope \((\Delta H>0)\) and positive y-intercept \((\Delta S>0)\) is \(2_{2}\) and AdA. This is due to the release of the two molecules of \(C_{6} D_{6}\) that were initially encapsulated and the encapsulation of one molecule of AdA.

The following Part B is not included in the official IChO Problems 2021 because of the IChO exam length regulation.

\section*{Part B}

Four plate-shape molecules \(\mathbf{1 0}\) quantitatively form an octahedral capsule with large internal space by coordination bonds with six palladium clips. This capsule can be used as a "small flask" for organic reactions.


When compounds 11 and 12 were added to an aqueous solution of the octahedral capsule and the resulting mixture was stirred, one molecule of 11 and one molecule of 12 were incorporated into the octahedral capsule. However, no new compounds were observed when the solution was heated. Compounds 13 and 12 were also encapsulated into the capsule, and compound 14 was obtained upon heating of the solution. In the absence of the capsule, no reaction occurred even after heating. Compounds 15 and 12 were also encapsulated and were quantitatively converted, upon heating, to compound 16, a product of the [4+2] cycloaddition reaction. Heating a solution of 15 and 12 in the absence of the capsule gave compound 17, a structural isomer of 16.
Note that the notation "11\&12@capusule" indicates that compounds 11 and 12 are encapsulated in the capsule.




13

B. 1 Compound 16 has stereoisomers, but the reaction in the capsule provided only 16. Contrarily, there are no stereoisomers in compound 17. Draw the structures of 16 and 17 with their stereochemistry clearly shown.
16

The results of the reactions of 12 with 11 and with 13 tell that the [4+2] cycloaddition reaction (a Diels-Alder reaction) does not proceed when the total volume of the encapsulated molecules is small enough to allow them to move within the capsule and that the reaction occurs when the encapsulation is so tight to fix the two molecules in close proximity then to induce this intrinsically slow dearomatizing bimolecular reaction. Notably, the cycloaddition reaction between 13 and 12 took place on the sterically more accessible benzene ring. The propyl side chains of 13 and the cyclohexyl group of 12 are oriented in the same direction, which would originate from the tightest packing of the two molecules 13 and 12 in the capsule and led to the selective formation of 14. The reaction between 15 and 12 in the capsule should follow the rules above and proceeded from tight encapsulation to form 16. The formation of compound 17 is a well-known reaction, which occurs at the 9 and 10 positions of anthracene to allow two benzene rings to remain. Products 16 and 17 are identifiable by considering the information about stereoisomerism of each product. Further reading:
Makoto Fujita, et al., "Naphthalene Diels-Alder in a Self-Assembled Molecular Flask" Journal of the American Chemical Society 2010, Vol. 132, Iss. 9, 2866-2867.

Makoto Fujita, et al., "Functional Molecular Flasks: New Properties and Reactions within Discrete, Self-Assembled Hosts" Angewandte Chemie International Edition 2009, Vol. 48, Iss. 19, 34183438.```

